Final Drainage Report for

Cornett Building at Hurricane Industrial Park - Lots 6

Dated: October 25, 2024

Calculations Prepared By:

1257 Airport Parkway, Suite A Greenwood, Indiana 46143 LAND PLANNING · ENGINEERING · SURVEYING · PROJECT MANAGEMENT

OFFICE (317) 882-5003 FAX (317) 882-1082

Certified By:

K 25/24 Smith, P.E.

REPORT INDEX:

I. Technical Information Data

- Development Conditions
- Water Quality Methodology
- Engineering Methodology
- Stormwater Pollution Prevention
- Area Map
- FEMA Flood Map
- Soils Map
- Rainfall Data and Distribution
- II. Approved Post-Development, Detention and Storm Sewer Calculations Prepared by Steven B. Williams, Franklin Engineering for the Hurricane Industrial Park, Dated February 20, 2001
 - 'CN' Site Summary
 - Development Basin Map
 - Runoff Calculations
 - Pond Calculations
 - Storm Drain Flow Calculations

III. Additional Detention Pond Calculations, Prepared by Projects Plus for the Hurricane Industrial Park - Lots 9 & 10, Dated April 11, 2011

- Allowable HYDRAFLOW Hydrograph Runoff Calculations
- Detention Pond Calculations
- Overall Post-Developed Drainage Map

TECHNICAL INFORMATION DATA

Development Conditions:

The proposed development for the Cornett Building is located at the 1442 Amy Lane, Franklin, IN 46131 on Lot #6 in the Hurricane Industrial Park - Section 3. Existing ground cover is grass with soil hydrologic groups type 'B' and 'C'. The proposed development includes the construction of a 9,850 S.F. building with asphalt pavement. Drainage will be provided by a combination of sheet flow and drainage swales, with flow to existing culverts and road side swales. Additional construction activities include a sanitary sewer lateral, domestic water service line, and other utility connections to building.

The drainage watershed for the site is part of an approved drainage system for Hurricane Industrial Park, prepared by Steven B. Williams, Franklin Engineering Dated February 20, 2001. The approved drainage report had a post-development runoff coefficient of 0.60 for the entire subdivision. The existing detention pond located within the industrial park was designed and built to provide detention for lot 6. The project site is located within Basin 'A' in the drainage basin map depicted within the "Approved Post-Development, Detention and Storm Sewer Calculations" section of this report.

In 2011, the City of Franklin requested updated detention pond calculations when Lots #9 and #10 were developed as lots were being developed it became apparent that the original approved coefficient was not conservative enough for a, industrial subdivision. Therefore in new drainage coefficient and calculations were prepared by Projects Plus, with a new runoff coefficient being established for all existing and future post-development runoff. A coefficient of 0.70 was determined for the overall development and a coefficient of 0.74 was determined for Lot #6, with a impervious coverage of 85% assumed.

The calculations listed below for the proposed development project is to verify that the site is under the allowable impervious coverage and runoff coefficient.

Lot #6 – 1.11 acres Proposed and future impervious = 0.90 acres Grass Area = 0.21 acres Weighted 'C' = $[(0.90 \times 0.85) + (0.21 \times 0.20)] / 1.11$ Weighted 'C' = 0.73 < 0.74

The proposed runoff coefficient for Lot #6 is less than the weighted coefficient for future developments included in the Projects Plus report, no additional detention is required for this project.

Water Quality Methodology:

Water Quality for the site will be achieved by routing the storm runoff to the existing detention pond, which will provide treatment in addition to the existing vegetated swale which will provide pretreatment prior to release to the detention pond. The wet detention pond acts as a permanent stormwater control structure providing both detention and treatment of contaminated stormwater runoff. The ponds natural physical, biological and chemical processes then work to remove pollutants.

Stormwater Pollution Prevention:

The land disturbing activities will be greater than 1 acre, so a IDEM Construction Stormwater General Permit (CSGP) submittal is required. A Stormwater Pollution Prevention Plan (SWPPP) with an activities schedule will be submitted as part of the construction plans. Standard maintenance schedules and details will be included. All swales and pond banks will be mulch-seeded and have an erosion control blanket installed. All drainage easements will be mulch-seeded and the rights-of-way will be temporary seeded. A perimeter filter fence will be installed where needed as well as at all ditch inlets.

National Flood Hazard Layer FIRMette

County, Indiana (INO81)	Map Unit Name AOI of AOI of AOI	Brookston silty 9.4 24.7 clay loam, 0 to 2 percent slopes	Crosby silt loam, 1.8 4.8 ine-loamy subsoil, 0 to 2 bercent slopes	Viami silt loam, 5.7 15.0 2 to 6 percent slopes, eroded	Miami clay loam, 1.3 3.4 5 to 12 percent slopes, severely eroded	Jrban land- 0.6 1.7 Brookston complex, 0 to 2 bercent slopes	Urban land- 7.0 18.3 Crosby silt loam complex, fine-
Johnson	Map Unit Symbol	Br	CrA	MnB2	MtC3	UbaA	UcfA

Houro	Minutoo	Return Period - Rainfall Intensity (in/hr)						
Hours	winnutes	2	5	10	25	50	100	
0.08	5	4.75	6.14	6.99	8.08	8.83	9.69	
0.17	10	3.63	4.75	5.48	6.40	7.07	7.77	
0.25	15	2.97	3.92	4.55	5.34	5.94	6.53	
0.5	30	1.98	2.64	3.09	3.65	4.10	4.50	
1	60	1.25	1.67	1.96	2.31	2.62	2.88	
2	120	0.76	1.02	1.20	1.40	1.59	1.75	
3	180	0.56	0.75	0.88	1.03	1.17	1.29	
6	360	0.33	0.44	0.52	0.60	0.68	0.75	
12	720	0.20	0.26	0.30	0.35	0.39	0.43	
24	1440	0.11	0.15	0.17	0.20	0.22	0.25	

Ношто	Minutoo	Return Period - Rainfall Depth (in)						
nouis	Minutes	2	5	10	25	50	100	
0.08	5	0.40	0.51	0.58	0.67	0.74	0.81	
0.17	10	0.61	0.79	0.91	1.07	1.18	1.30	
0.25	15	0.74	0.98	1.14	1.34	1.49	1.63	
0.5	30	0.99	1.32	1.55	1.83	2.05	2.25	
1	60	1.25	1.67	1.96	2.31	2.62	2.88	
2	120	1.52	2.04	2.40	2.80	3.18	3.50	
3	180	1.68	2.25	2.64	3.09	3.51	3.87	
6	360	1.98	2.64	3.12	3.60	4.08	4.50	
12	720	2.40	3.12	3.60	4.20	4.68	5.16	
24	1440	2.64	3.60	4.08	4.80	5.28	6.00	

TABLE 202-02: IDF and IDD Tables for Indianapolis, IN

Surface Description	n
Smooth surfaces	
(concrete, asphalt, gravel, or bare soil)	0.011
Fallow (no resídue)	0.05
Cultivated Soils:	
Residue cover = 20%<br Residue cover > 20%	0.06 0.17
Short grass prairie	0.15
Dense grasses	0.24
Bermuda grass	0.41
Range (natural)	0,13
Woods:	
Light underbrush	0.40
Dense underbrush	0.80

TABLE 203-01: Roughness coefficients (Manning's n) for sheet flow

TYPE OF SURFACE	RUNOFE COFFFICIENT ©

<u>Non-Urban Areas</u>

Bare earth	0.55
Steep grassed areas (slope 2:1)	0.60
Turf meadows	0.25
Forested areas	0.20
Cultivated fields	0.30

Urban Areas

All watertight roof surfaces		0.90
Pavement		0.85
Gravel		0.85
Impervious soils (heavy)		0.55
Impervious soils (with turf)		0.45
Slightly pervious soil		0.25
Slightly pervious soil (with turf)		0.20
Moderately pervious soil		0.15
Moderately pervious soil (with turf)		0.10
Business, Commercial & Industrial		0.85
Apartments & Townhouses		0.70
Schools & Churches		0.55
Single Family Lots < 10,000 SF		0.45
Lots < 12,000 SF		0.45
Lots < 17,000 SF		0.40
Lots > 1/2 acre	0.35	
Park, Cemetery or Unimproved Area		0.30

TABLE 204-01: Runoff Coefficients[®] for Use in the Rational Method

	<u> </u>	Flooding			High water table			Botontial	
Soit name and map symbol	Hydro- logic group	Frequency	Duration	Months	Depth	Kind	Months	frost action	
Brookston; Br	B/D	Frequent	Brief	Dec-May	rt 0-1,0	Apparent	Dec-May	High.	
Crosby: CrA	С	None			1.0-3.0	Apparent	Jan-Apr	High.	
'⊂⊾82: Crosby part	С	None			1.0-3.0	Apparent	Jan-Apr	High.	
Miami part	В	None			>6.0			Moderate,	
Eel:	С	Frequent	Brief	Oct-Jun	3.0-6.0	Apparent	Jan-Apr.	High,	
Fox: FoA, FoB2, ' FxC2	В	None			>6.0			Moderate.	
Genesee: Ge	_ B	Frequent	Brief	Oct-Jun	>6.0		····· ···	Moderate,	
Hennepin: HeF	в	None			>6.0			Moderate.	
Martinsville: MgA, MgB2	В	None			>6.0	·····		Moderate.	
Miami : MmA, Mm82, MmC2, ¹ MxO2, MxE2.	в	None		······	>6.0			Moderate.	
Ockley: OcA, Oc82	В	None			>6.0			Moderate.	
Rensselaer:	B/D	None			0-1.0	Apparent	Dec-May	High.	
Shoalat \$h	с	Frequent	Brief	Oct-Jun	1.0-3.0	Apparent	Jan-Apr	High.	
Sleeth: \$k	С	None			1.03.0	Apparent	Jan-Apr	High.	
Sloan: Sn	B/D	Frequent	Long	Oct-Jun	0-0.5	Apparent	Nov-Jun	High.	
Urban land:								-	
Brookston part	B/D	Frequent	Brief	Dec-May	0-1.0	Apparent	Dec-May	High.	
'Ucı Crosby part	С	None			1,0-3.0	Apparent	Jan-Apr	High.	
¹ U/A. Fox part	в	None			>6.0			Moderate.	
¹ U/C ₁ Fox part	в	None			>6.0		·	Moderate.	
¹ Ugi Geneses part	Đ	Frequent	Brief	Oct-Jun	>6.0			Moderate.	
¹ UmB, Miami part	В	None			>6.0			Moderate.	
' UmCı Miami part	В	None			>6,0			Moderate.	
¹ Uw Westland part	B/D	Frequent	Brief	Dec May	01.0	Apparent	Dec-May	High.	
Westland :	B/D	Frequent	Brief	Dec-May	0-1.0	Apparent	Дес-Мау	High.	
Whitaker: Wh	C	None			1.0~3.0	Apparent	Jan-Apr	High.	

[Absence of an entry indicates the feature is not a concern. The symbol < means less than; > means greater than]

'This mapping unit is made up of two or more dominant kinds of soil. See mapping unit description for the composition and behavior of the whole mapping unit.

TABLE 205-01: Soil and Water Features for Marion County, Indiana(SOURCE: NRCS, Soil Survey of Marion county, Indiana, 1991)

Cover Description	Curve Numbers for Hydrologic Soil Groups					
Cover Type and	Average Percent	A	В	С	D	
Hydrologic Condition	Impervious Area					
Fully developed urban areas (vegetation established) Open space (lawns, parks, golf courses, cemeteries,						
etc.) ²		68	79	86	89	
Poor condition (grass cover < 50%) Fair condition (grass cover 50% to 75%) Good condition (grass cover > 75%)		49 39	69 61	79 74	84 80	
Impervious Areas: Paved parking lots, roofs, driveways, etc. (excluding right-of-way)		98	98	98	98	
Streets and Roads: Paved; curbs and storm drains (excluding right-of- way) Paved; open ditches (including right-of-way) Gravel (including right-of-way) Dit (including right of way)		98 83 76 72	98 89 85 82	98 92 89 87	98 93 91 89	
Urban Districte:] 			
Commercial and Business Industrial	85 72	89 81	92 88	94 91	95 93	
Residential Districts by Average Lot Size: 0.125 acre or less (townhouses) 0.25 acre 0.33 acre 0.50 acre 1.00 acre 2.00 acre	65 38 30 25 20 12	77 61 57 54 51 46	85 75 72 70 68 65	90 83 81 80 79 77	92 87 86 85 84 82	
Developing Urban Areas Newly graded areas (pervious area only, no vegetation)		77	86	91	94	
Idle lands (CN's are determined using cover types simil	ar to those in <u>Table</u>	205-0	<u>04</u>).			

Average runoff condition, and $I_a = 0.2S$

The average percent impervious area shown was used to develop the composite CNs. Other assumptions are as follows: Impervious areas are directly connected to the drainage system, impervious areas have a CN of 98, and pervious areas are considered equivalent to open space in good hydrologic condition. If the impervious area is not connected, the NRCS method has an adjustment to reduce the effect.

³ CNs shown are equivalent to those of pasture. Composite CNs may be computed for other combinations of open space cover type.

TABLE 205-02: Runoff Curve Numbers for Urban Areas(SOURCE: 210-VI-TR-55, Second Ed., June 1986)

Cover Description	Curve Numbers for Hydrologic Soil Gro				
Cover Type and Hydrologic Condition	А	В	С	D	
Cultivated Land (Row Crops) With conservation treatment Without conservation treatment	72 62	81 71	88 78	91 81	
Pasture or Range Land Poor condition Good condition	68 39	79 61	86 74	89 80	
Meadow Good condition	30	58	71	78	
Wood or Forest Land Thin stand, poor cover, no mulch Good cover	45 25	66 55	77 70	83 77	

TABLE 205-03: Runoff Curve Numbers for Undeveloped Areas
(SOURCE: 210-VI-TR-55, Second Ed., June 1986)

Cover Description	Curve Numbers fo Hydrologic Soil Grou			for roups
Cover Type and Hydrologic Condition	А	В	С	D
Pasture, grassland or range with continuous forage for grazing.				
Poor	68	79	86	89
Fair	49	69	79	84
Good	39	61	74	80
Meadow with continuous grass, protected from grazing and generally mowed for hay.	30	58	71	78
Brush/brush-weed-grass mixture with brush being the major element.				
Poor	48	67	77	83
Fair	35	56	70	77
Good	30	48	65	73
Woods and grass combination (orchard or tree farm).				
Poor	57	73	82	86
Fair	43	65	76	82
Good	32	58	72	79
Woods				
Poor	45	66	77	83
Fair	36	60	73	79
Good	30	55	70	77
Farmsteads	59	74	82	86

TABLE 205-04: Runoff Curve Numbers for Agricultural Lands
(SOURCE: 210-VI-TR-55, Second Ed., June 1986)

Approved Post-Development, Detention and Storm Sewer Calculations

Prepared by Steven B. Williams, Franklin Engineering for the Hurricane Industrial Park Dated February 20, 2001 HURRICANE INDUSTRIAL PARK DRAINAGE REPORT REVISED: OCTOBER 2, 2000

REV: 2-20-01

Original Conditions:

Onsite A = 24 Acres C = .4 cropland D = 1200' H = 12' S = 1% T = 30 min. $I_{10} = 3.1$ $Q_{10} = 24$ (.4) 3.1 = 30 cfs

Future Conditions:

Onsite A = 24 Acres D = 1500'C = .3 S = 1%C = .6 (estimated) T = 40 min. $I_{100} = 3.9$ 3.9(.6)(24) = 56 cfsRequired Storage = 26 cfsArea to Pond = 81 Acres (offsite) & 18.3 Acres (onsite) = 99.3 acres 81 Acres (a) C = .4 CA = 32.418.3 Acres (a) C = .6 CA = 11.0TOTAL CA = 43.4C = .3S = .5%D = 4500'Tc = 77 min. $I_{i0} = 1.87$ $I_{100} = 2.72$ Q_{100} to Pond = 2.72 (43.4) = 118 cfs Use 24" RCP @ .3% restrictive outlet pipe @ HW/D = 3.375 Qcap 36.5 cfsPeak Storage Required = 8 acre/feet Storage Provided in pond and ditches = 8 acre/feet Flow Stored at Peak = 80 cfs Area to 36" east-west pipe under road = 82 acres 75 acres (a) C = .4CA = 307 Acres (*a*) C = .6CA = 4.2TOTAL CA = 34.2Q = 34.2 (1.87) = 63.9 cfsQcap 36" = 63.6 cfs Qcap 54" RCP = 120 cfsFlow to 54'' = 63.3 + 38.1 + 5 + 5 = 111.4 cfs Prepared by:

Steven B. Williams

Project [DES HUEPICA	NF PARK			100	6-5
Designer	SBU)	Poloana	on Facility D	esign Return P	eriodyrs.	
		Acrease	Rate Return	Period	JU yrs.	
Watershed A	rea BC) acres			•	
Time of Cond	centration (und	eveloped wat	ershed) 7	7-		
Rainfall In	tensity (i _n)		1.87	_/ minuces		
Undeveloped	Runoff Coeffic	ient (C.) .	04	inches/hr		
Undeveloped	Runoff Rate (0	$= C_{1}i_{1}A_{1}$	135		•	
Developed R	unoff Coefficie	nt (C_)	0.6			
·	· ·					
Storm	Rainfall	Inflow	Outflow	Storage	Pagui ya J	-
Duration	Intensity	Rate	Rate	Rate	Storage	
d	d d	I(t _d)	ο			
•		$(C_{D}i_{d}A_{D})$	(C _U i _U A _U)	I(t _d)-0.	$\begin{bmatrix} I(t_d) - o \end{bmatrix} \begin{bmatrix} t_d \\ 12 \end{bmatrix}$	
(lurs)	(inches/hr)	(cfs)	(cfs)	(cfs)	(acre-ft)	
		CA= 43.4	38.)			4
0.17)			-
0.25						-
0.33					-	-
0.42						-
	4.50	195.3		157.2	6.5	-
0.67		· · · · · · · · · · · · · · · · · · ·				-
0.83						-
1.00	3.00	30,2	· · · ·	92.1	7.6	
1.25			<u> </u>			
1.50			<u> </u>			
						—
	2.00	86.8		48.7	8.0 =	PENK
2.25						
. 2.50						
2.75						
3.00	1.50	65.1		27.0	1.7	
3.25						-
4.00	1.30	56.4	¥-	18.3	6.0	1

Figure 6.2 Computation Sheet for Detention Storage Calculations Using the Rational Method

•

OUTLET STRUCTURE REPORT

RECORD NUMBER : 1 TYPE : CIRCULAR CONCRETE #/ square edge #/ beadwall DESCRIPTION : 54"RCP

(RATING CURVE LIMIT)

Minimum Blevation	=	729.60 (ft	1
Naxigum Elevation	=	735.00 (ft	;)
Blevation Increment	2	0.10 (ft	;}

(OUTLET STRUCTURE INFORMATION)

Circular Radius	×	2.25000	(ft)
Culvert Invert Elevation	=	729.59998	(ft)
Slope	±	0.00000	
Nanning's N-value	=	0.01300	
Orifice Coefficient	=	0.60000	
Tailwater	=	730.29999	(ft)
Number barrels	⊑ ე≌.,≴≣	1	

[UNSUBMERGED EQUATION]

$H/Diam = Hc/Diam + K * (Q/A*Diam^0.5))^H - 0.$.5 ≭ S^2	
Coefficient K	2	0.00980
coefficient M	=	2.00000

[SUBMERGED EQUATION]

$H/Diam = c^{*}(Q/(A^{*}Diam^{0}.5))^{2} + Y - 0.5^{*}S^{2}$		
Coefficient c	=	0.03980
Coefficient Y	=	0.67000

[DEFINITIONS]

H = Headwater depth above inlet control section invert, (ft) Diam = Inerior height of culvert barrel, (ft) Hc = Specific head at critical depth (dc + Vc^2/2q), (ft) Q = Discharge, (cuft/s) A = Full cross sectional area of culvert barrel, (sqft) S = Culvert barrel slope, (ft/ft)

OUTLET STRUCTURE REPORT

۰_. ۱

RECORD NUMBER: 1TYPE: CIRCULAR CONCRETE W/ square edge W/ headwallDESCRIPTION: 54*RCP

[Culvert Weir Discharge Yalue vs. Stage] {the elevation increment is 1.0}

STAGE	BLBYATION	FLON	
	(ft)	(cfs)	
3.00	732.60	23.20	
4.00	7 33. 60	67.64	
5.00	734.60	104.78	

OUTLET STRUCTURE REPORT

•. ·

RECORD NUMBER : 2 TYPE : CIRCULAR CONCRETE w/ square edge w/ headwall DESCRIPTION : 24"RCP

[Culvert Weir Discharge Value vs. Stage] (the elevation increment is 1.0)

S	TAGE	[(ft)	FLOW (cfs)	
and the second	1.00		732.25	0.45	
	2.00		733.25	11.93	
	3.00		734.25	20.07	
	4.00		735.25	25.70	
	5,00		736.25	30.14	
	6.00	á	137.25	34.00	
	7.00		738.25	37.47	
	7.24		138.50	38.	1

•

OUTLET STRUCTURE REPORT

RECORD NUMBER : 2 TYPE : CIRCULAR CONCRETE w/ square edge w/ headwall DESCRIPTION : 24"RCP

(RATING CURVE LIMIT)

Minimum Elevation	=	731.25	(ft)
Maximum Elevation	=	738,50	(ft)
Elevation Increment	=	0.10	(ft)

(OUTLET STRUCTURE INFORMATION)

Circular Radius	=	1.00000 (ft)
Culvert Invert Elevation	=	731.25000 (Et)
\$lope	=	0.00300
Nanning's H-value	=	0.01300
Orifice Coefficient	2	0.60000
Tailwater	=	731.13000 (ft)
Number barrels	=	1

[UNSUBMERGED EQUATION]

H/Diam = Hc/Diam + K *(Q/A*Diam^0.5))^M - 0.5*S^2	
Coefficient K =	0.00980
coefficient N =	2.00000

[SUBMERGED EQUATION]

$H/Diam = c^{*}(Q/(A^{*}Diam^{0.5}))^{2} + Y - 0.5^{*}S^{2}$		
Coefficient c	=	0.03980
Coefficient Y	Ξ	0.67000

{DEFINITIONS]

H = Headwater depth above inlet control section invert, (ft)

Diam = Inerior height of culvert barrel, (ft)

Hc = Specific head at critical depth (dc + Vc²/2q), (ft)

- Q = Discharge, (cuft/s)
- A = Full cross sectional area of culvert barrel, {sqft}

ı.

S = Culvert barrel slope, (ft/ft)

٠

OUTLET STRUCTURE REPORT

RECORD NUMBER : 3 TYPE : CIRCULAR CONCRETE w/ square edge w/ headwall DESCRIPTION : 36*RCP

[RATING CURVE LIMIT]

Nininum Elevation	=	729.80	(ft)
Naximum Blevation	Ξ	735.00	(ft)
Blevation Increment	=	0.10	(ft)

[OUTLET STRUCTURE INFORMATION]

Circular Radius	i z	1.50000	{ft}
Culvert Invert Elevation	=	729.79999	(Et)
Slope	=	0.00500	
Manning's N-value	Ħ	0.01300	
Orifice Coefficient	=	0.60000	
Tailwater	=	729.59998	(ft)
Number barrels	=	1	

[UNSUBMERGED EQUATION]

H/Diam = Hc/Diam + K *(Q/A*Diam^0.5))^M - 0	.5*\$^2	
Coefficient K	=	0.00980
coefficient M	=	2.00000

(SUBMERGED EQUATION)

H/Dian = c*(Q/(A*Dian^0.5))^2 + Y - 0.5*S^2		
Coefficient c	=	0.03980
Coefficient Y	=	0.67000

(DEFINITIONS)

H = Headwater depth above inlet control section invert, (ft) Diam = Inerior height of culvert barrel, (ft) Hc = Specific head at critical depth (dc + Vc²/2q), (ft) Q = Discharge, (cutt/s) A = Full cross sectional area of culvert barrel, (sqft) S = Culvert barrel slope, (ft/ft)

RECORD NUMBER	:	3						
TYPE	;	CIRCULAR	CONCRETE	W/	square	edqe	₩/	headwall
DESCRIPTION	;	36"RCP	-way gally of Table	5.50	Carter			

[Culvert Weir Discharge Yalue vs. Stage] (the elevation increment is 1.0)

STAGE	ELEVATION (ft)	FLO¥ (cfs)
2.00	731.80	12.71
3.00	732.80	33.84
4.00	733.80	50.09
5.00	734.80	61.35
4.20	135.00	43.10

÷

RAINFALL INTENSITY VALUES

Indianapolis, Indiana

Duration (Minutes)	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year
5	4.50	5.50	6.30	7.30	.8.00	8.50
6	4.30	5.30	6.00	7.00	7.70	8.20
7	4.10	5.10	5.75	6.75	7.40	7.90
8	3.90	4.90	5.50	6.50	7.10	7:60
9	3.70	4.70	5.25	6.25	6.80	7.30
10	3.50	4.50	5.00	6.00	6.50	7.00
15	2.90	3.70	4.40	5.10	5.60	6.10
20	2.50	3.30	3.80	4.50	5.00	5.50
25	2.25	2.95	3.45	4.05	4.50	5.00
30	2.00	2.60	3.10	3.60	4.00	4.50
40	1.65	2.25	2.60	3.10	3.50	3.90
50	1.45	2.00	2.30	2.75	3.10	3.40
60	1.25	1.75	2.10	2.50	2.70	3.00
120	0.78	1.10	1.30	1.60	1.70	2.00
180	0.58	0.80	1.00	1.20	1.30	1.50
240	0.47	0.65	0.80	0.95	1.10	1.30

For Additional Values See Referenced Publications

Values taken from graph prepared by U.S. Department of Commerce Weather Bureau based on recorded rainfalls from 1903 to 1951 See Technical Paper No. 25, Page 14, or Indiana State Highway Commission Hydraulic Design of Drainage Culverts, Page 35 OVERLAND FLOW AND RUN-OFF COEFFICIENT

÷

.

•

FIGURE 5.3

192

FIGURE 6

FLOW FOR HORI

BASED (

SL

							 -			. .	+ - -		 -+		5	<u></u>) FC	R
	1002-0	I CUMI	M4/4	HEMARKS															
LIC WORKS	DATE 2.20	SHEET TOTAL IN	CUMPUTED BY	INIEN U CIA PIPE n : 0.013	3,1 12,8 18° 1.14 40'	3,0 3,4 18" 1,14 2%	1,85 80.3 24 4.1 7 30	3.1 3.35 154 1.47 3 170	1.82 2354175438 34 1 1 5 240	2/ 2/ 2/ 2/ 2/ 2/ 2/ 2/						* PEST. OUTLET	ORM DRAINAGE DESIGN	BULATION FORM	
DEPARTMENT OF PUBL	SIURM URAIN FLUM TAUU	JACK-	ļ	CUM TIME CONC - MIN	3 4.12 30 - 30	54.47 30 1 31	2 34.2 77 - 1/1 x 43,4 77 - 1 78	8 1,08 30 - 30	1 4437 78 2 80	a/ _ x/ 16 10							STANDARD ST	FLOW TAI	
	VIN & HINREY CAME 1	HURRICANE IND. C	N WITH J.O. NO	A ACRES COEFF	Sub Tolol "C"	5 8,8 9,3 .7 .30	1 75 82 42 42	9 - 1.8.1 - 18	2/100.8 103 44 .97	7 75 76.71,405 1.0							IANAPOLIS	IT OF PUBLIC WORKS	
	IDCATION ACI	DEVELOPMENT	MADE IN CONNECTIO	LOCATION	From To	B C			E4F 6 2.					-+				DEPARTMEN	

Reference:

11

M #8

Additional Detention Pond Calculations

Prepared by Projects Plus for the Hurricane Industrial Park - Lots 9 & 10 Dated April 11, 2011

4[11]11

Hurricane Ind	lustrial		_	Stori	n Sew	er	Calculatio	ns	
			AC.	%	0.400		"C"	0.00	\sim
LOT #1	"C" Factor ≠	Lawn	0.32	13%	0.132	х	0.15 =	0.02	\mathbf{N}
		Asphalt	1.56	64%	0.645	X	0.85 =	0.55	\mathbf{h}
		Roof	0.54	22%	0.223	х	0.90 =	0.20	\
Area =		Culivated Field	0.00	0%	0.000	X	0.30 =	<u>0.00</u>	1
2.42 Acres							Weighted 'C'	0.77	
LOT #2	"C" Factor =	Lawn	0.54	23%	0.234	х	0.15 =	0.04	1
		Asphalt	1.23	53%	0.532	x	0.85 =	0.45	1
		Roof	0.54	23%	0.234	x	0.90 =	0.21	1
Area =		Culivated Field	0.00	0%	0.000	х	0.30 =	0.00	1
2.31 Acres							Weighted 'C'	0.70	
									(
LOT #15	"C" Factor =	Lawn	0.50	43%	0.435	x	0.15 =	0.07	l l
		Asphalt	0.46	40%	0.400	x	0.85 =	0.34	
		Boof	0.19	17%	0.165	x	0.90 =	0.15	> Exicitin
Ar ea -		Gulivated Field	0.00	0%	0.000	y	0.30 =	0.00	1
1 15 Aoros		Califated Field	0.00	0,0	0.000	~	Weighted 'C'	0.55	1 677
1.15 Acres						_	weighted O	0.00	(
LOT #16	"C" Factor =	Lawn	0.56	49%	0.487	x	0.15 =	0.07	
		Asphalt	0.43	37%	0.374	x	0.85 =	0.32	
		Boof	0.16	14%	0.139	x	0.90 =	0.13)
Aroa –		Culivated Field	0.00	0%	0.000	Ŷ	0.30 =	0.00	1
Alta -		Outrated Field	0.00	070	0.000	^	Weighted 'C'	0.52	
			1.07	4.50/	0.450		0.15	0.00	PROPOSED
LOI #3,6-8	"C" Factor =	Lawn	1.37	15%	0.150	x	0.15 =	0.02	
11-12,17		Asphalt	7.74	85%	0.850	х	0.85 =	0.72	LOT #ø
		Roof	0.00	0%	0.000	х	0.90 =	0.00	DEVELOPMENT
Area =		Culivated Field	.0.00	0%	0.000	х	0.30 =	<u>0.00</u>	
9.11 Acres							Weighted 'C'	0.74	Furvice
							<u> </u>	-	('pali
.ots # 13-16	"C" Factor =	Lawn	1.24	25%	0.250	х	0.15 =	0.04	
		Asphalt	3.72	75%	0.750	х	0.85 =	0.64	1
		Roof	0.00	0%	0.000	х	0.90 =	0.00	
Area =		Culivated Field	0.00	0%	0.000	x	0.30 =	0.00	
4.96 Acres							Weighted 'C'	0.68	
Lots # 9-10	"C" Factor =	Lawn	0.74	29%	0.290	х	0.15 =	0.04) _
		Asphalt	1.31	51%	0.514	x	0.85 =	0.44	MIRENT
		Roof	0.50	20%	0.196	x	0.90 =	0,18	
		Culivated Field	0.00	0%	0.000	¥	0.30 =	0.00	1 ver.
Δre2 -			0.00	070	0.000	~	Weighted 'C'	0 66	
Area =		Cullvated Field					weighted O	0.00	
Area = 2.55 Acres	_								
Area = 2.55 Acres 					0.000				/
Area = 2.55 Acres 			5.27	22%	0.223	x	0.15 =	0.03	/
Area = 2.55 Acres 		Lawn Asphalt	5.27 16.45	22% 70%	0.223 0.696	x x	0.15 = 0.85 =	0.03 0.59	
Area = 2.55 Acres		Lawn Asphalt Roof	5.27 16.45 1.93	22% 70% 8%	0.223 0.696 0.082	x x x x	0.15 = 0.85 = 0.90 =	0.03 0.59 0.07	
Area = 2.55 Acres		Lawn Asphalt Roof Culivated Field	5.27 16.45 1.93 0.00	22% 70% 8% 0%	0.223 0.696 0.082 0.000	x x x x x	0.15 = 0.85 = 0.90 = 0.30 =	0.03 0.59 0.07 <u>0.00</u>	
Area = 2.55 Acres 		Lawn Asphalt Roof Culivated Field	5.27 16.45 1.93 0.00	22% 70% 8% 0%	0.223 0.696 0.082 0.000	x x x x	0.15 = 0.85 = 0.90 = 0.30 = Weighted 'C'	0.03 0.59 0.07 <u>0.00</u> 0.70	

Hydrograph Summary Report

Hyd. No.	Hydrograph type (orlgin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Maxlmum storage (cuft)	Hydrograph description
1	Rational	53.30	1	40	127,912				Offsite - Frnk Eng
2	Rational	24.94	1	24	35,909				Onsite - Frnk Eng
3	Combine	61.61	1	40	163,821	1, 2			Total to Pond
4	Reservoir	23.13	1	63	163,476	3	734.48	111,407	Thru Pond
				15					Official English English
1	Rational	53.30	1	40	127,912				Onshe - Frnk Eng
8	Rational	29.09	1	24	41,894				Onsite - revised Proj +
9	Combine	62.99	1	40	169,806	7,8			
10	Reservoir	23.81	1	62	169,459	9	734.58	114,967	Thru Pond
				,					
100)9post-dra	.gpw			Return	Period: 2	Year	Monday, /	Apr 11 2011, 12:10 PM

Hydrograph Summary Report

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Maximum storage (cuft)	Hydrograph description
1	Rational	83.45	1	40	200,284				Offsite - Frnk Eng
2	Rational	38.76	1	24	55,816				Onsite - Frnk Eng
3	Combine	96.37	1	40	256,100	1, 2			Total to Pond
4	Reservoir	30.60	1	65	255,737	3	736.09	176,734	Thru Pond
7	Rational	83.45	1	40	200,284				Offsite - Frnk Eng
8	Rational	45.22	1	24	65,119				Onsite - revised Proj +
9	Combine	98.53	1	40	265,403	7, 8			Total to Pond
10	Reservoir	31.16	1	65	265,039	9	736.24	183,416	Thru Pond
100	09post-dra	.gpw			Return	Period: 1	0 Year	Monday, A	Apr 11 2011, 12:10 PM

Hydrograph Summary Report

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Maximum storage (cuft)	Hydrograph description
1	Rational	122.09	1	40	293,027				Offsite - Frnk Eng
2	Rational	56.20	1	24	80,922				Onsite - Frnk Eng
3	Combine	140.83	1	40	373,949	1, 2			Total to Pond
4	Reservoir	37.34	1	68	373,565	3	738.09	269,751	Thru Pond
7	Pational	122.00	1	40	203 027				Offsite - Emk Eng
7 8	Rational	65 56	1 1	40 24	94 409				Onsite - revised Proi +
0	Combine	1/3 95	1	24 40	387 436	7.8			Total to Pond
9 10	Beservoir	37.97	1	68	387.051	,, U 9	738.30	280 257	Thru Pond
1000	09post-dra	.gpw	_		Return	Period: 1	00 Year	Monday, /	Apr 11 2011, 12:10 PM

Hydrai Iow H	horographs by linte	lisolve			Monday, Apr 11 2011, 12:12 PM
Hyd. N	io. 1				
- Olísile ·	- Frnk Eng				
Hydrogi Slorm fi Drainag Intensit IDF Cui	raph type requency je area y ive	= Rational = 100 yrs = 81.0 ac = 3.768 In/l = MARION.	ar IDF	Peak discharge Time Interval Runoff coelf. Tc by User Asc/Rec limb lact	= 122.09 cfs = 1 min = 0.4 = 40 min = 1/1
Hydrog	raph Discha	arge Table			Hydrograph Volume = 293,027 cut (Pasted values >= 30% of Op.
Time -	Outflow	Time -	Outitow		
(hrs	cts)	(hrs	cis)		
0.33 0.35 0.37 0.38 0.40 0.42 0.43 0.45 0.45 0.46 0.50 0.52 0.53 0.55	61.05 64.10 67.15 70.20 78.31 79.36 82.41 85.47 88.52 94.62 97.68 100.73	0.90 0.92 0.93 0.95 0.97 0.99 End	79.36 76.31 73.28 70.20 67.15 64.10		
0.57 0.58 0.60 0.62 0.63 0.65 0.67 0.68 0.70	103.76 106.83 109.89 112.94 115.99 119.04 122.09 << 119.04 115.99				
0.72 0.73 0.75 0.77 0.78 0.80 0.82 0.83 0.83	112,34 109,88 106,83 103,76 100,73 97,68 94,62 91,57 86,52 91,57				

Hydrograph Report

Hydrafiow Hydrographs by Int	eisolve		Monday, Apr 11 20(1, 12:13 PM
Hyd. No. 2			
Onsile - Frnk Eng			
Hydrograph type Storm frequency Drainage area Intensity IDF Curve	= Rational = 100 yrs = 16.3 ac = 5.118 kr/hr = MARION.IDF	Peak discharge Time Interval Runoff coeff. To by User Asc/Rec Ilmb fact	= 56.20 cfs = 1 min = 0.6 = 24 mln = 1/1

Hydrograph Discharge Table

Time -	Outilow
(hrs	cls)
0.20	28.10
0.22	30.44
0.23	32.78
0.25	35.12
0.27	37.46
0.28	39.81
0.30	42.15
0.32	44.49
0.33	46.83
0.35	49.17
0.37	51.51
0.38	53.85
0.40	56.20 <<
0.42	53.85
0.43	51.51
0.45	49.17
0.47	46.83
0.48	44.49
0.50	42.15
0.52	39.81
0.53	37.46
0.55	35.12
0.57	32.78
0.58	30.44

...End

1

Hydrograph Volume = 60,922 cv/t (Pinkal values > - 50% of Op) 1

1

Hydrog	graph	Report
--------	-------	--------

Hydrafiow Hydrographe by	Intelisativa		Monday, Apr 11 2011, 12:16 PM
Hyd. No. 3			
Total to Pend			
Hydrograph type Storm frequency Inflow hyds:	= Combine = 100 yrs = 1, 2	Peak discharge Time Interval	= 140.83 cfs = 1 min
			Hydrograph Volume = 373,949 cult
Hydrograph Dis	charge Table		(Paraditation (Paraditation)
Time Hvd. 1	+ Hvd. 2 =		Outflow
(hre) (cis)	(cla)		(cts)
0.40 73.26	56.20 <<		129.45
0.42 76.31	53.85		130.16
0.43 79.36	51.51		130.67
0.45 82.41	49.17		131.59
0.47 85.47	46.63		132.30
0.48 68.52	44.49		133.01
0.50 91.57	42.15		133.72
0.52 94.62	39.81		134.43
0.53 97.68	37.46		135.14
0.55 100.73	35.12		135.85
0.57 103.78	32.79		136.56
0.58 405.83	30.44		137.27
0.60 109.89	20.10		137.98
0.62 112.94	25.76		138.69
0.63 115.99	23.42		139.40
0.65 119.04	21.07		140.12
0.67 122.09	<< 18.73		140.83 <<
0.68 119.04	16.39		135.43
0.70 115.99	14.05		130.04
End			

Hydrograph Report

Hydr. No. 4 Thru Pond Hydrograph type = Reservoir Storm frequency = 100 yrs Inflow hydrograph type = 738.09 ft Max. Elevation = 738.09 ft Storm frequency = 738.00 ft	7 PM	11, 12:17	, Apr 11 20	Monday								eŭsolve	hotrographs by	Hydra/low
Thru Pond Hydrograph type = Reservoir Peak discharge = 37.34 cls Storm frequency = 100 yrs Time interval = 1 min Inflow hyd. No. = 3 Beservoir Time interval = 1 min Max. Elevation = 778.09 ft Max. Storage = 269,751 cult Culture Serage Induction = 778.09 ft Culture Culture -37.80 ft Serage Induction = 778.09 ft Culture Culture - 269,751 cult Serage Induction Cit A Ctv B Cit C Cit D Wr B Wr C Wr D Extil Outlif (Inter) cfs ft cfs cfs cfs ofs cfs													to. 4	Kyd.
Hydrograph type = Reservoir Peak discharge = 37.34 cls Storm frequency = 100 yrs Time interval = 1 min Inflow hyd. No. = 3 Bearton frequency = 738.09 ft Max. Elavation = 738.09 ft Bearton frequency = 269,751 cult Storm Inflow hyd. No. = 3 Culture hydrograph type = 1 min Max. Elavation = 738.09 ft Culture hydrograph type = 269,751 cult Storage induston method used. Culture hydrograph type = 1 min Extint Outpe Time intitlew Elevation Cit X Ctv B Cit C Cit D Wr B Wr C Wr D Extil 0.85 86.52 737.75 35.63													ond	Thru P
Confrastrychogogen volume - 373,660 Confrastrychogogen volume - 373,660 Priod action Confrastrychogogen volume - 373,660 Priod action Confrastrychogogen volume - 373,660 Priod action Confrastrychogogen volume - 373,660 Confrastrychogogen volume - 373,670 Confrastrychogogen volume - 373,670 Confrastrychogogen volume - 373,670 </th <th></th> <th>nd</th> <th>cis liion Po 51 cuit</th> <th>37.34 1 min Deten 269,7:</th> <th>e = = Ke = =</th> <th>ischarg Iterval olr nam lorage</th> <th>Peak di Time in Reserv Max, Si</th> <th></th> <th></th> <th></th> <th>ervoir yrs 09 ft</th> <th>≖ Res = 100 = 3 = 738</th> <th>raph type requency yd. No. evalion</th> <th>Hydros Slorm Inflow Max. E</th>		nd	cis liion Po 51 cuit	37.34 1 min Deten 269,7:	e = = Ke = =	ischarg Iterval olr nam lorage	Peak di Time in Reserv Max, Si				ervoir yrs 09 ft	≖ Res = 100 = 3 = 738	raph type requency yd. No. evalion	Hydros Slorm Inflow Max. E
Hydrograph Discharge Table Time inflow Elevation Civ A Ctv B Civ C Civ D Wr A Wr B Wr C Wr D Exit Out f Cis	5 cuft	373,565	uh volume = / Pódatena	#Inycliograp	Cullia							sd.	eation method	Storage In
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $											le	arge Tal	raph Dis	Hydro
(hrs) cfs fi cfs cfs <th>llow</th> <th>Oulf</th> <th>Exfil</th> <th>Wr D</th> <th>WrC</th> <th>Wr B</th> <th>Wr A</th> <th>Civ D</th> <th>Civ C</th> <th>Cly B</th> <th>Civ A</th> <th>evalion</th> <th>initow</th> <th>Time</th>	llow	Oulf	Exfil	Wr D	WrC	Wr B	Wr A	Civ D	Civ C	Cly B	Civ A	evalion	initow	Time
$ 0.85 & 88.52 737.55 & 35.63 \qquad \qquad$		cfa	cis	cis	ois	cfe	cía	cis	cis	cís	cís	11	cís	(hrs)
	60	25									05.05		** **	
Def Def <thdef< th=""> <thdef< th=""> <thdef< th=""></thdef<></thdef<></thdef<>	83	35.									32.03	737.53	88.52	0.85
	02	361									36.00	207.01	03.47	0.67
0.50 732 76 38.57	20	36.									36.20	797 79	70.96	0.00
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$.37	36.1									36.37	737 78	76.31	0.92
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$.52	36.									36.52	737.83	73.26	0.93
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$.66	36.4									36.66	737.67	70.20	0.95
	.78	36.1									36.76	737.91	67.15	0.97
	.89	36.									36.89	737.95	64.10	0.98
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$.99	36.9									36,99	737.98	61.05	1.00
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$.08	37.									37.09	738-01	57.99	1.02
	.15	37.									37.15	738.03	54.94	1.03
	.21	37.3			•••••	**					37.21	738.05	51.69	1.05
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$.26	37.									37.26	738.07	48.64	1.07
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-30	07.									37.30	/38.08	45.79	1.08
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	34	27				**					37.32	/38.09	42.73	1.10
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	34 ~~	37									37.34	735.09	39.68	1.12
1.19 35.35 736.09 37.31	33	37									37.34	738.09 <<	30.03	1.10
110 27.47 738.08 37.29	31	37.	,								37.31	738.09	30.52	1.13
1.20 24.42 738.06 37.24	.28	37.									37.28	738.08	27 47	1-17
1.22 21.37 758.04 37.19	.24	37.									37.24	738.05	24 42	1 20
1.23 18.31 738.02 37.12 37. 1.25 15.26 738.00 37.05 37. 1.27 12.21 737.79 36.94	19	37.									37.19	738.04	21.37	1.22
1.25 15.28 738.00 37.05 37. 1.27 12.21 737.97 36.96	.12	37.									37.12	738.02	18.31	1.23
1 27 12 21 737.97 36.96	.05	37.									37.05	738.00	15.26	1.25
	-96	36.1	*						*****		36.90	737.97	12.21	1.27
1.28 9.16 737.94 36.85	.85	36.		•••••					•••••	•	36.85	737.94	9.16	1.28
1.30 6.10 737.90 36.74	.74	36.							•••••	•	36.74	737.90	6.10	1.30
1.32 3.05 737.66 36.61 36.	.61	36.					**				36.61	737.66	3.05	1.32
1.33 0.00 737.62 36.46	.48	36.									36,40	737.02	0.00	1.33
1.35 U.OU /31.// 36.33	10	30.									36.33	(31.17	0.00	1.35
Log 0.00 737.73 30.19	05	16									30.19	137.13	0.00	1.37
1.30 0.00 737.00 30.03 ····· 30.00 ···· 300 ···· 300	â	35									35.03	797.00	0.00	1.40
140 0.00 737.00 0.00	76	35									35.90	737 50	0.00	1.40
1.42 0.00 797.59 06.50	.eĩ	35.									35.62	797 54	0.00	1.42
1.45 0.00 737.50 35.47 35.	.47	35.									35.47	737.50	0.00	1.45

...End

.

hdraflow Hydrog	raphs by Intel	isaho			Monday, Apr 11 2011, 12:14 PM
Hyd. No.	7				
- Offsite - Fri	nk Eng				
Hydrograpi Storm Irequ Drainage a Intensity IDF Curve	h lype Iency Irea	= Rational ≃ 100 yrs = 81.0 ac = 3.768 in/f = MARION	ır IDF	Peak discharge Time Interval Runolf coeff, Tc by User Asc/Rec Ilmb fact	= 122.09 cfs = 1 mln = 0.4 = 40 mln = 1/1
Hydrograp	h Discha	arge Table		· -	Hydrograph Volume = 293,027 cur (P41ud values >= 57% of Op
rimo - Ou	iflow	Time	Outline		
hrs o	cis)	(hrs	cfe)		
		•···-			
0.33	61.05	0.90	79.35		
0.35	64.10	0.92	76.31		
0.37	07.15	0.93	73.26		
0.38	70.20	0.95	70.20		
0.40	73.25	0.97	67.15		
0.42	76.31	0.98	64.10		
0.43	79.36				
0.45	82.41	5 .4			
0.47	85.47	End			
0.48	04.52				
0.50	91.57				
0.52	94.02				
0.55	100.79				
0.57	103.78				
0.58	105.63				
0.60	109.89				
0.62	112.94				
0.63	115.99				
0.65	119.04				
0.67	122.09 <<				
0.68	119.04				
0.70	115.99				
0.72	112.94				
0.73	109.88				
0.75	105.83				
0.77	103.78				
0.78	100.73				
0.80	97.68				
0.62	34.02				
0.95	88.52				
0.00	95.32				
0.01	0.0.47				

Hyd. No. 8		
Onsite - revised Pr	oj +	
Hydrograph type Storm frequency Drainage area Intensity IDF Curve	= Rational = 100 yrs = 18.3 ac = 5.118 In/hr = MARION.IDF	Peak disch Time Interv Runoff coel To by User Asc/Rec lin
Hydrograph Disci	narge Table	

narge = 65.56 cfs val = 1 min vff. = 0.7 r = 24 min mb fact = 1/1

Hydrograph Volume = 94,409 cut. (Philed values >= \$75 of Dp.)

Monday, Apr 11 20(1, 12:15 PM

1

1

Hydrog	raph Discharge T	'ab
Time –	Outflow	
(hrs	cfs)	
0.20	32.76	
0.22	35.51	
0.23	38.24	
0.25	40.98	
0.27	43.71	
0.28	46.44	
0.30	49.17	
0.32	51.90	
0.33	54.64	
0.35	57.37	
0.37	60.10	
0.30	62.83	
0.40	65.56 <<	
0.42	62.83	
0.43	60.10	
0.45	57.37	
0.47	54.64	
0.40	51.90	
0.50	49.17	
0.52	48.44	
0.53	43.71	
0.55	40.98	
0.57	38.24	
0.58	35.51	
0.60	32.76	
End		

Hydrograph Report Hydraffow Hydrographs by Intelsolve

Hydraflow Hydrographs by bit	anearing	
Hyd. No. 9		•
Total to Pond		
Hydrograph type Storm frequency Inflow hyds.	≂ Combine = 100 yrs ≖ 7, θ	Peak discharge Time interval

Hydrograph Report

			Hickograph Volume = 387,436 cut
Hydrog	raph Discha	ge Table	(Printed values + - 20% of Cp)
Time	Hyd. 7 +	Hyd. 8 =	Outflow
(hra)	(cfs)	(eta)	(cla)
0.38	70.20	62.83	133.03
0.40	73.26	65.58 <<	138.62
0.42	76.31	62.83	139.14
0.43	79.36	60.10	139.46
0.45	B2.41	57.37	139.70
0.47	65.47	54.64	140.10
0.48	88.52	51.90	140.42
0.50	91.57	49.17	140.74
0.52	94.62	46,44	141.06
0.53	97.68	43.71	141.38
0.55	100.73	40.98	141.70
0.57	103.70	38.24	142.02
0.58	105.83	35.51	42.35
0.60	109.89	32.78	142.67
0.62	112.94	30.05	142.99
0.63	115 99	27.32	143.31
0.65	119.04	24.59	43.63
0.67	122.09 <<	21.85	143.95 <<
0.68	119.04	19.12	138.16
0,70	115.99	16.39	132.36

	End
••	

Hydro	graph	Report

thorahow	Hydrographs	hy hilefisoive								матрау	, Apir 11 2i	IT, 12:18 PM
Hyd. Thru F	No. 10 ^P ond											
Hydrograph type = Reservoir Storm frequency = 100 yrs Inflow hyd. No. = 9 Max. Elevation = 738.30 ft							Peak discharge = 37.97 cfs Time interval = 1 mìn Reservoir name = Detention Pond Max. Storage = 280,257 cuft					and
Slorage k	dication metho	d used.							Outline	# hydrograp	n volume :	- 397,051 cult
Hydro	graph Di	scharge Tat	le								(Printed value	straw 97% of Op (
Time (hre)	inflow c(s	Elevation fi	Civ A cís	Civ B cía	Civ C cia	Civ D cis	Wr A cla	WrB cía	Wr C cfe	Wr D cfs	Exíll cts	Outflow cfs
0.90 0.92	79.36 76.31	737.96 738.01	36.93 37.08									36.93 37.08
0.93 0.95	73.26 70.20	738.06 738.10	37.22 37.35	· '								37.22 37.35
0.97 0.98	67.15 64.10	738.14 738.17	37.48 37.57	••••	-							37.46 37.57
1.00	01.05 57.99	738.20 738.22	37.66 37.74				•					37.66 37.74
1.03 1.05	54.94 51.89	738.25 738.27	37.80 37.86	- • •	• • • • •							37.80 37.86
1,07 1.08	48.84 45.79	738.28 738.29	37.90 37.94									37.90 37.94
1.10 1,12	42.73 39.68	738.30 738.30	37.96 37.97									37.90 37.97
1.13 1.15	36.63 33.58	738.30 << 738.30	37.97 37.96	· · · · · ·								37.97 < 37.90
1.17	30,52 27,47	738.29 738.28	37.94 37.91	•								37.94 37.91
1.20 1.22	24.42 21,37	738.27 738.25	37.87 37.81									37.87 37.81
1.23 1.25	18.31 15.26	738.23 738.20	37.75 37.67									37.75 37.67
1.27 1.28	12.21 9.16	738.18 738.14	37.59 37.49									37.59 37.49
1.30	6.10 3.05	736.11 738.07	37.30 37.26									37.38 37.26
1.33	0.00	738.03	37.13									37.13 36.99
1.37	0.00	737.93	36.84									35.84

.

...End

1

Menday, Apr 11 2011, 12:16 PM

≖ 143.95 cís = 1 mìn

Pond Report

Hydraflow Hydrographs by Intelisolve

Pond No. 1 - Detention Pond

Pond Data

Pond storage is based on known contour areas. Average end area method used.

Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)	
0.00	731.00	26,323	0	0	
1.00	732.00	29,098	27,711	27,711	
2.00	733.00	32,500	30,799	58,510	
3.00	734.00	36,500	34,500	93,010	
4.00	735.00	39,500	38,000	131,010	
5.00	736.00	43,500	41,500	172,510	
6.00	737.00	46,000	44,750	217,260	
7.00	738.00	49,500	47,750	265,010	
7.50	738.50	51,000	25,125	290,135	

Culvert / Orifice Structures

Weir Structures

	[A]	[B]	[C]	[D]		[A]	[B]	[C]	[D]
Rise (in)	= 24.00	0.00	0.00	0.00	Crest Len (ft)	= 0.00	0.00	0.00	0.00
Span (in)	= 24.00	0.00	0.00	0.00	Crest El. (ft)	= 0.00	0.00	0.00	0.00
No. Barrels	= 1	0	0	0	Weir Coeff.	= 0.00	0.00	0.00	0.00
Invert El. (ft)	= 731.00	0.00	0.00	0.00	Weir Type	=			
Length (ft)	= 30.00	0.00	0.00	0.00	Multi-Stage	= No	No	No	No
Slope (%)	= 0.30	0.00	0.00	0.00					
N-Value	= .013	.000	.000	.000					
Orif. Coeff.	= 0.60	0.00	0.00	0.00					
Multi-Stage	= n/a	No	No	No	Exfiltration = 0).000 in/hr (Co	ontour) Tai	lwater Elev	$v_{.} = 0.00 \text{ft}$

Note: Culvert/Orifice outflows have been analyzed under inlet and outlet control.

Stage / Storage / Discharge Table												
Stage ft	Storage cuft	Elevation ft	Clv A cfs	Clv B cfs	Civ C cfs	Clv D cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	Total cfs
0.00	0	731.00	0.00									0.00
1.00	27.711	732.00	2.77									2.77
2.00	58.510	733.00	5.53									5.53
3.00	93.010	734.00	19.25									19.25
4.00	131.010	735.00	26.20									26.20
5.00	172.510	736.00	30.25									30.25
6.00	217.260	737.00	33.82									33.82
7 00	265.010	738.00	37.05									37.05
7.50	290,135	738.50	38.56									38.56

INVERT =

LEGEND LOT NUMBER PAD GRADE EXISTING CONTOUR PROPOSED GRADE STORM SEWER SANITARY SEWER WATER LINE FIRE HYDRANT DRAINAGE AND UTILITY EASEMENT BUILDING SETBACK LINE

CONSTRUCTION NOTES

The Contractor shall remove the topsoil in the areas of the streets and building pads requiring fill and stockpile it in an area designated by the Owner/Developer, to be distributed in the front yard and rear yards after rough grade on the streets and pads have been completed.

The building pads are to be constructed to an extend of 50' x 100' feet behind the front building

All fills in the streets and building pad areas shall be compacted to ninety-five (95) percent Standard Proctor (ASTM-D698).

The Contractor is responsible for coordinating all construction work and inspections with the property Department of Public Works Sanitation, Department of Transportation and Project Engineer before commencing any work.

All disturbed areas outside the actual building pads, streets and paved areas shall be mulched seeded with erosion control methods as shown on the "Erosion Control Plan" included in this set.

Driveways, sidewalks, and street trees are not a part of the site developme sibility of the individual residential builders for each lot.

The Contractor is responsible for the field verification of all underground utilities and having each located before commencing construction with him being liable for any and all disruption due to interrupting services.

All structure finished floor elevations shall be 0.5' above the pad grade shown. (Min.)

	100'X 50' SELEG FILL (COMPACTED)
OPSOIL FILL _ 10	in their Topson File
. 2	EKST. GRAD
	TYPICS PAD SECTION

ALL DE LES	NG 172 172	07 107		
DESIG DRAW CHEC	NED: N: KED:			
HURRICANE INDUSTRIAL PARK	FRANKLIN, INDIANA	GENERAL DEVELOPMENT PLAN		
Engineers and Land Surveyors	Franklin Engineering Company	151 West Jefferson Street Frankin, Incliana 46131	+7168 (317) 738-4549	
	REVIS		(317) 736	
DATE	P	EVISION		
3/14/01	011	1		
7/17/01 7/2/02 9/29/02	077 EXTB 36"	ND361 PCP#T 75TQ67	TE	
PRO	J. NO.			
SCA		=50	'	
DAT	=2-	16-0	1	
FILE	NO.	0288		
SHT	3	OF 12	?	