Final Drainage Report for

Commerce Business Park - Building #2 Expansion

City of Franklin, Johnson County, Indiana

Dated: September 28, 2023

Calculations Prepared By:

1257 Airport Parkway, Suite A Greenwood, Indiana 46143 LAND PLANNING · ENGINEERING · SURVEYING · PROJECT MANAGEMENT

OFFICE (317) 882-5003 FAX (317) 882-1082

Certified By:

9/28/23

REPORT INDEX:

I. Technical Information Data

- Summary of Pre-Developed Drainage Conditions and Allowable Release Rates
- Summary of Post-Developed Drainage Conditions and Water Quality Calculations
- Engineering Methodology and Stormwater Pollution Prevention
- Area Map
- FEMA Flood Map
- Rainfall Data and Distribution

II. Pre-Developed Drainage Calculations

- 'CN' Calculations
- TR55 TC Worksheets
- 2, 10 & 100 yr. Hydrography Summary Reports

III. Post-Developed Drainage Calculations

- 'CN' Calculations
- TR55 TC Worksheets
- Pond Summary
- Pond Control Box Detail
- Pond Spillway Calculation
- 2, 10 & 100 yr. Hydrography Summary Reports
- Emergency Spillway Calculations

IV. Water Quality Calculations

- Water Quality Calculations
- Hydrography Summary Reports

V. Storm Sewer Calculations

- 'CN' and TR 55 Calculations
- 10 yr. Storm Sewer Hydrographs Summaries
- 10 yr. Storm Sewer Hydrographs Details
- HYDRAFLOW Storm Sewer Calculations
- Inlet Spread Calculations

VI. Watershed Delineation Maps

- Pre-Developed Drainage Map
- Post-Developed Drainage Map
- Storm Sewer Drainage Map Building #2

TECHNICAL INFORMATION DATA

Summary of Pre-Developed Drainage Conditions:

The project, "Commerce Business Park" is located at 1424 Commerce Parkway, in the City of Franklin, Johnson County, Indiana. The site is located within the 'C' soil classifications per the Soil Survey Maps for Johnson County. The undeveloped site was planted in comprised of row crops and used for agriculture purposes. Building #1 was constructed in 2013. Building #2 was constructed in 2018.

<u>Onsite Pre-Basin '1'</u> drains to the south to an existing swale along Arvin Road. The swale then drains east to an existing 36" RCP under Commerce Parkway. The drainage runoff ultimately releases to Hurricane Creek. A summary of the drainage release runoff:

 Onsite Pre-Basin '1'

 A = 5.72 acres CN = 78 T/C=27.4 min.

 $Q_{10} = 1.11 \text{ cfs}, Q_{10} = 3.51 \text{ cfs}, Q_{100} = 7.98 \text{ cfs}$

Allowable Release Rates:

The allowable runoff release rates per Section 6.19 of the Subdivision Control Ordinance of the City of Franklin are as follows:

- The peak discharge from the 100-yr. post-developed storm event shall not exceed the peak discharge from the 10-yr. pre-developed storm event.
- The peak discharge from the 10-yr. post-developed storm event shall not exceed the peak discharge from the 2-yr. pre-developed storm event.

The allowable post-developed release rates for the site were calculated per the above requirements and a summary of the release rates are as follows:

 $Q_{10} = 1.11 \text{ cfs}, Q_{100} = 3.51 \text{ cfs}$

Summary of Post-Developed Drainage Conditions:

The proposed site improvements for the "Commerce Business Park" will consist of two 24,000 sq. ft. buildings, including asphalt parking, concrete aprons, concrete curbs and sidewalks. Additional improvements consist of the installation of public and private utilities. The runoff from the site will be routed through a proposed dry detention pond with the outlet controlled by a pond control box, which will outlet to the existing 36" RCP pipe under Commerce Parkway. The drainage design for the site is designed to meet the General Drainage Standards, Chapter 6.19 of the City of Franklin Subdivision Control Ordinance. A summary of the drainage runoff and the dry detention pond are as followed:

 $\begin{array}{l} \underline{Onsite\ Post-Basin\ `1':}\\ A=5.72\ acres & CN=89 & T/C=25.4\ min.\\ Q_2=3.56\ cfs,\ Q_{10}=8.14\ cfs,\ Q_{100}=15.00\ cfs\\ Detention:\\ N.P.=735.00,\ T.O.B.=740.00,\ Storage=77,458\ Cu.\ Ft.\\ 100-yr\ elev.=737.86\\ Outflow:\\ Q_2=0.72\ cfs,\ Q_{10}=0.91\ cfs,\ Q_{100}=3.35\ cfs \end{array}$

The "Commerce Business Park – Building #2 Expansion" has a 5,000 sq. ft. building expansion to the main 15,000 sq. ft. building and the site construction will include asphalt parking, and concrete apron. See the Post-Developed Watershed Map in Section VI of this report.

Water Quality:

The dry detention pond and pond control box are designed to meet the City of Franklin Subdivision Control Ordinance, Section 6.19, for water quality design. The water quality detention pond is designed for option #1; detain 20% of the 0.5" direct runoff for 24 hours past the peak. However, the required storage for this runoff and 24 hour detention time required an orifice less than the 2" diameter, which is the minimum allowable orifice. Using a 2"diameter orifice the pond will detain 20% of the 0.5" direct runoff for a period of at least 6 hours past the peak, at 24 hours past the peak the dry detention basin will drain down to normal pool.

Engineering Methodology:

The calculations contained herein have been prepared in compliance with the City of Franklin Subdivision Control Ordinance. The detention facilities were designed using HYDRAFLOW Hydrograph Routing Module. A storm hydrograph is developed using the "SCS Curve Number Method" for each watershed and routed through a user defined detention basin and outlet structure configuration. Water surface elevations and outlet rates are determined by the storage indication method which uses a stage/storage/discharge relationship and inflow hydrograph to set the inflow minus the outflow equal to the change in storage. The post-developed drainage basins and basin characteristics for each pond are shown on the "Post-Development Drainage Map".

The storm sewer system was designed using the HYDRAFLOW Storm Sewer Module. Discharge rates for each inlet were calculated using the "SCS Curve Number Method" and input into the HYDRAFLOW Storm Sewer Module to calculate the capacity and hydraulic grade line for each pipe. Storm sewer systems are sized for a 10-year event with no surcharging.

Erosion Control:

The land disturbing activities will be less than 1 acre, so an IDEM Construction Stormwater General Permit (CSGP) submittal is not required. A Stormwater Pollution Prevention Plan (SWPPP) with an activities schedule will be submitted as part of the construction plans. Standard maintenance schedules and details will be included. All swales and pond banks will be mulch-seeded and have an erosion control blanket installed. All drainage easements will be mulch-seeded and the rights-of-way will be temporary seeded. A perimeter filter fence will be installed where needed as well as at all ditch inlets.

National Flood Hazard Layer FIRMette

36°3'20"W 39°29'54"N

Basemap Imagery Source: USGS National Map 2023

Houro	Minutoo	Return Period - Rainfall Intensity (in/hr)								
Hours	winnutes	2	5	10	25	50	100			
0.08	5	4.75	6.14	6.99	8.08	8.83	9.69			
0.17	10	3.63	4.75	5.48	6.40	7.07	7.77			
0.25	15	2.97	3.92	4.55	5.34	5.94	6.53			
0.5	30	1.98	2.64	3.09	3.65	4.10	4.50			
1	60	1.25	1.67	1.96	2.31	2.62	2.88			
2	120	0.76	1.02	1.20	1.40	1.59	1.75			
3	180	0.56	0.75	0.88	1.03	1.17	1.29			
6	360	0.33	0.44	0.52	0.60	0.68	0.75			
12	720	0.20	0.26	0.30	0.35	0.39	0.43			
24	1440	0.11	0.15	0.17	0.20	0.22	0.25			

Ношто	Balinutan	Return Period - Rainfall Depth (in)								
nouis	Minutes	2	5	10	25	50	100			
0.08	5	0.40	0.51	0.58	0.67	0.74	0.81			
0.17	10	0.61	0.79	0.91	1.07	1.18	1.30			
0.25	15	0.74	0.98	1.14	1.34	1.49	1.63			
0.5	30	0.99	1.32	1.55	1.83	2.05	2.25			
1	60	1.25	1.67	1.96	2.31	2.62	2.88			
2	120	1.52	2.04	2.40	2.80	3.18	3.50			
3	180	1.68	2.25	2.64	3.09	3.51	3.87			
6	360	1.98	2.64	3.12	3.60	4.08	4.50			
12	720	2.40	3.12	3.60	4.20	4.68	5.16			
24	1440	2.64	3.60	4.08	4.80	5.28	6.00			

TABLE 202-02: IDF and IDD Tables for Indianapolis, IN

Surface Description	n
Smooth surfaces	
(concrete, asphalt, gravel, or bare soil)	0.011
Fallow (no resídue)	0.05
Cultivated Soils:	
Residue cover = 20%<br Residue cover > 20%	0.06 0.17
Short grass prairie	0.15
Dense grasses	0.24
Bermuda grass	0.41
Range (natural)	0,13
Woods:	
Light underbrush	0.40
Dense underbrush	0.80

TABLE 203-01: Roughness coefficients (Manning's n) for sheet flow

TYPE OF SURFACE	RUNOFE COFFFICIENT ©

<u>Non-Urban Areas</u>

Bare earth	0.55
Steep grassed areas (slope 2:1)	0.60
Turf meadows	0.25
Forested areas	0.20
Cultivated fields	0.30

Urban Areas

All watertight roof surfaces		0.90
Pavement		0.85
Gravel		0.85
Impervious soils (heavy)		0.55
Impervious soils (with turf)		0.45
Slightly pervious soil		0.25
Slightly pervious soil (with turf)		0.20
Moderately pervious soil		0.15
Moderately pervious soil (with turf)		0.10
Business, Commercial & Industrial		0.85
Apartments & Townhouses		0.70
Schools & Churches		0.55
Single Family Lots < 10,000 SF		0.45
Lots < 12,000 SF		0.45
Lots < 17,000 SF		0.40
Lots > 1/2 acre	0.35	
Park, Cemetery or Unimproved Area		0.30

TABLE 204-01: Runoff Coefficients[®] for Use in the Rational Method

	<u> </u>	I	Flooding		r	Betential		
Soit name and map symbol	Hydro- logic group	Frequency	Duration	Months	Depth	Kind	Months	frost action
Brookston; Br	B/D	Frequent	Brief	Dec-May	rt 0-1,0	Apparent	Dec-May	High.
Crosby: CrA	С	None			1.0-3.0	Apparent	Jan-Apr	High.
'⊂⊾82: Crosby part	С	None			1.0-3.0	Apparent	Jan-Apr	High.
Miami part	в	None			>6.0			Moderate,
Eel:	С	Frequent	Brief	Oct-Jun	3.0-6.0	Apparent	Jan-Apr.	High,
Fox: FoA, FoB2, ' FxC2	В	None			>6.0			Moderate.
Genesee: Ge	_ B	Frequent	Brief	Oct-Jun	>6.0		····· ···	Moderate,
Hennepin: HeF	в	None			>6.0			Moderate.
Martinsville: MgA, MgB2	В	None			>6.0	·····		Moderate.
Miami : MmA, Mm82, MmC2, ¹ MxO2, MxE2.	в	None		······	>6.0			Moderate.
Ockley: OcA, Oc82	В	None			>6.0			Moderate.
Rensselaer:	B/D	None			0-1.0	Apparent	Dec-May	High.
Shoalat \$h	С	Frequent	Brief	Oct-Jun	1.0-3.0	Apparent	Jan-Apr	High.
Sleeth: \$k	С	None			1.03.0	Apparent	Jan-Apr	High.
Sloan: Sn	B/D	Frequent	Long	Oct-Jun	0-0.5	Apparent	Nov-Jun	High.
Urban land:								-
Brookston part	B/D	Frequent	Brief	Dec-May	0-1.0	Apparent	Dec-May	High.
'Ucı Crosby part	С	None			1,0-3.0	Apparent	Jan-Apr	High.
¹ U/A. Fox part	в	None			>6.0			Moderate.
¹ U/Ci Fox part	в	None			>6.0		·	Moderate.
¹ Ugi Geneses part	Đ	Frequent	Brief	Oct-Jun	>6.0			Moderate.
¹ UmB, Miami part	В	None			>6.0			Moderate.
' UmCı Miami part	В	None			>6,0			Moderate.
¹ Uw Westland part	B/D	Frequent	Brief	Dec May	01.0	Apparent	Dec-May	High.
Westland :	B/D	Frequent	Brief	Dec-May	0-1.0	Apparent	Дес-Мау	High.
Whitaker: Wh	C	None			1.0~3.0	Apparent	Jan-Apr	High.

[Absence of an entry indicates the feature is not a concern. The symbol < means less than; > means greater than]

'This mapping unit is made up of two or more dominant kinds of soil. See mapping unit description for the composition and behavior of the whole mapping unit.

TABLE 205-01: Soil and Water Features for Marion County, Indiana(SOURCE: NRCS, Soil Survey of Marion county, Indiana, 1991)

Cover Description	Curve Numbers for Hydrologic Soil Groups					
Cover Type and	Average Percent	A	В	С	D	
Hydrologic Condition	Impervious Area					
Fully developed urban areas (vegetation established) Open space (lawns, parks, golf courses, cemeteries,						
etc.) ²		68	79	86	89	
Poor condition (grass cover < 50%) Fair condition (grass cover 50% to 75%) Good condition (grass cover > 75%)		49 39	69 61	79 74	84 80	
Impervious Areas: Paved parking lots, roofs, driveways, etc. (excluding right-of-way)		98	98	98	98	
Streets and Roads: Paved; curbs and storm drains (excluding right-of- way) Paved; open ditches (including right-of-way) Gravel (including right-of-way) Dit (including right of way)		98 83 76 72	98 89 85 82	98 92 89 87	98 93 91 89	
Urban Districte:] 			
Commercial and Business Industrial	85 72	89 81	92 88	94 91	95 93	
Residential Districts by Average Lot Size: 0.125 acre or less (townhouses) 0.25 acre 0.33 acre 0.50 acre 1.00 acre 2.00 acre	65 38 30 25 20 12	77 61 57 54 51 46	85 75 72 70 68 65	90 83 81 80 79 77	92 87 86 85 84 82	
Developing Urban Areas Newly graded areas (pervious area only, no vegetation)		77	86	91	94	
Idle lands (CN's are determined using cover types simil	ar to those in <u>Table</u>	205-0	<u>04</u>).			

Average runoff condition, and $I_a = 0.2S$

The average percent impervious area shown was used to develop the composite CNs. Other assumptions are as follows: Impervious areas are directly connected to the drainage system, impervious areas have a CN of 98, and pervious areas are considered equivalent to open space in good hydrologic condition. If the impervious area is not connected, the NRCS method has an adjustment to reduce the effect.

³ CNs shown are equivalent to those of pasture. Composite CNs may be computed for other combinations of open space cover type.

TABLE 205-02: Runoff Curve Numbers for Urban Areas(SOURCE: 210-VI-TR-55, Second Ed., June 1986)

Cover Description	Curve Numbers for Hydrologic Soil Groups					
Cover Type and Hydrologic Condition	А	В	С	D		
Cultivated Land (Row Crops) With conservation treatment Without conservation treatment	72 62	81 71	88 78	91 81		
Pasture or Range Land Poor condition Good condition	68 39	79 61	86 74	89 80		
Meadow Good condition	30	58	71	78		
Wood or Forest Land Thin stand, poor cover, no mulch Good cover	45 25	66 55	77 70	83 77		

TABLE 205-03: Runoff Curve Numbers for Undeveloped Areas
(SOURCE: 210-VI-TR-55, Second Ed., June 1986)

Cover Description	Curve Numbers fo Hydrologic Soil Grou			for roups
Cover Type and Hydrologic Condition	А	В	С	D
Pasture, grassland or range with continuous forage for grazing.				
Poor	68	79	86	89
Fair	49	69	79	84
Good	39	61	74	80
Meadow with continuous grass, protected from grazing and generally mowed for hay.	30	58	71	78
Brush/brush-weed-grass mixture with brush being the major element.				
Poor	48	67	77	83
Fair	35	56	70	77
Good	30	48	65	73
Woods and grass combination (orchard or tree farm).				
Poor	57	73	82	86
Fair	43	65	76	82
Good	32	58	72	79
Woods				
Poor	45	66	77	83
Fair	36	60	73	79
Good	30	55	70	77
Farmsteads	59	74	82	86

TABLE 205-04: Runoff Curve Numbers for Agricultural Lands
(SOURCE: 210-VI-TR-55, Second Ed., June 1986)

Pre-Developed Drainage Conditions

Project: Location:	By: Checked:	JPH	Date: 7/19/13 Date:				
Circle one:	Present Developed	Onsite Basin '1'					
1. Runoff curv	ve number (CN)						
Soil Name and Hydrologic Group	Cover Description (cover type, treatment, and hydrologic condition; percent impervious; unconnected/connected impervious area ratio	CN 1/	Area (in acres)	Product of CN x area			
'C'	Cultivated Land (Row Crops)	78	5.72	446.2			
				0.0			
				0.0			
	· ·			0.0			
				0.0			
		Totals=	5.72	446.2			
CN (weighted)) = <u>Total Product</u> = Total Area	<u>446.2</u> 5.72	=	78.00			

.

Hyd. No. 1

Pre Dev - 1 hr.

Description		<u>A</u>		B		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)		0.150 100.0 2.64 0.80		0.011 0.0 2.64 0.00		0.011 0.0 0.00 0.00		
Travel Time (min)		15.56	nga N	0.00	*	0.00	100000 - 100000	15.56
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)		267.00 0.80 Unpaved 1.44 3.08	t +	377.00 0.20 Unpave 0.72 8.71	d +	0.00 0.00 Paved 0.00 0.00		11.79
Haver finite (finity		0100	-					
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s) Flow length (ft)		0.00 0.00 0.00 0.012 0.00 0.0		0.00 0.00 0.015 0.00 0.00 0.0		0.00 0.00 0.015 0.00 0.00 0.0		
Travel Time (min)	inter Islanik	0.00	+	0.00	÷	0.00		0.00
Total Travel Time, Tc								27.35 min

Hydrograph Summary Report

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Maximum storage (cuft)	Hydrograph description
1	SCS Runoff	0.97	1	49	2,765				Pre Dev - 1 hr.
2	SCS Runoff	1.11	1	60	4,986				Pre Dev - 2 hr.
3	SCS Runoff	1.06	1	66	6,568				Pre Dev - 3 hr.
4	SCS Runoff	0.86	1	102	9,753		bia Maria di Pil dak		Pre Dev - 6 hr.
5	SCS Runoff	0.99	1	331	14,919		Line of the 10 Mar		Pre Dev - 12 hr.
6	SCS Runoff	0.83	1	938	18,140		- utant -		Pre Dev - 24 hr.
1201					Roturn	Deriod: 2	Vear	VebsauT	Jul 23 2013 10:23 AM
1301	i i pre.gpw				Return	renou: Z	ical	Tuesuay,	001 20 20 10, 10.20 AIVI

Hydraflow Hydrographs by Intelisolve

Hyd. No. 2

Pre Dev - 2 hr.

Hydrograph type Storm frequency Drainage area Basin Slope Tc method Total precip. Storm duration	 SCS Runoff 2 yrs 5.72 ac 0.8 % TR55 1.52 in 2 hrs 	Peak discharge Time interval Curve number Hydraulic length Time of conc. (Tc) Distribution Shape factor	= 1.11 cfs = 1 min = 78 = 870 ft = 27.4 min = Huff-1st = 484
Storm duration	= 2 ms	Shape lactor	- 404

Hydrograph Discharge Table

Hydrograph Volume = 4,986 cuft

Tuesday, Jul 23 2013, 10:23 AM

(Printed values >= 50% of Qp.)

Time Outflow		Time	Outflow	Time Outflow			
(hrs	cfs)	(hrs	cfs)	(hrs	cfs)		
0.63	0.56	1.20	0.97	1.77	0.68		
0.65	0.61	1.22	0.95	1.78	0.68		
0.67	0.65	1.23	0.93	1.80	0.68		
0.68	0.70	1.25	0.91	1.82	0.67		
0.70	0.74	1.27	0.89	1.83	0.67		
0.72	0.78	1.28	0.87	1.85	0.66		
0.73	0.82	1.30	0.85	1.87	0.65		
0.75	0.86	1.32	0.83	1.88	0.65		
0.77	0.89	1.33	0.82	1.90	0.64		
0.78	0.92	1.35	0.80	1.92	0.63		
0.80	0.95	1.37	0.7 9	1.93	0.62		
0.82	0.97	1.38	0.77	1.95	0.61		
0.83	1.00	1.40	0.76	1.97	0.60		
0.85	1.02	1.42	0.75	1.98	0.59		
0.87	1.04	1.43	0.74	2.00	0.58		
0.88	1.06	1.45	0.73	2.02	0.57		
0.90	1.07	1.47	0.72	2.03	0.57		
0.92	1.08	1.48	0.71	2.05	0.56		
0.93	1.09	1.50	0.71				
0.95	1.10	1.52	0.70				
0.97	1.11	1.53	0.69	End			
0.98	1.11	1.55	0.69				
1.00	1.11 <<	1.57	0.69				
1.02	1.11	1.58	0.68				
1.03	1.10	1.60	0.68				
1.05	1.10	1.62	0.68				
1.07	1.09	1.63	0.68				
1.08	1.08	1.65	0.68				
1.10	1.07	1.67	0.68				
1.12	1.05	1.68	0.68				
1.13	1.04	1.70	0.68				
1.15	1.02	1.72	0.68				
1.17	1.00	1.73	0.68				
1.18	0.98	1.75	0.68				

Hydrograph Summary Report

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Maximum storage (cuft)	Hydrograph description
1	SCS Runoff	3.43	1	40	9,519				Pre Dev - 1 hr.
2	SCS Runoff	3.51	1	51	14,915				Pre Dev - 2 hr.
3	SCS Runoff	3.21	1	56	18,274				Pre Dev - 3 hr.
4	SCS Runoff	2.35	1	95	25,043			******	Pre Dev - 6 hr.
5	SCS Runoff	2.14	1	328	32,437			With its Activat	Pre Dev - 12 hr.
6	SCS Runoff	1.71	1	937	40,209			*******	Pre Dev - 24 hr.
13011pre.gpw				Return I	-eriod: 10	J Year	Tuesday,	Jul 23 2013, 10:23 AM	

Hydraflow Hydrographs by Intelisolve

Hyd. No. 2

Pre Dev - 2 hr.

Hydrograph type	= SCS Runoff	Peak discharge	= 3.51 cfs
Storm frequency	= 10 yrs	Time interval	= 1 min
Drainage area	= 5.72 ac	Curve number	= 78
Basin Slope	= 0.8 %	Hydraulic length	= 870 ft
Tc method	= TR55	Time of conc. (Tc)	= 27.4 min
Total precip.	= 2.40 in	Distribution	= Huff-1st
Storm duration	= 2 hrs	Shape factor	= 484

Hydrograph Volume = 14,915 cuft

(Printed values >= 50% of Qp.)

Η	lyd	rogi	aph	Disc	harge	Tabl	е
---	-----	------	-----	------	-------	------	---

Time	Outflow	Time	Outflow
(hrs	cfs)	(hrs	cfs)
0.52	1.84	1.08	2.98
0.53	1.99	1.10	2.92
0.55	2.14	1.12	2.86
0.57	2.28	1.13	2.80
0.58	2.42	1.15	2.74
0.60	2.55	1.17	2.67
0.62	2.68	1.18	2.60
0.63	2.80	1.20	2.54
0.65	2.91	1.22	2.47
0.67	3.01	1.23	2.41
0.68	3.10	1.25	2.35
0.70	3.19	1.27	2.29
0.72	3.27	1.28	2.23
0.73	3.33	1.30	2.17
0.75	3.39	1.32	2.12
0.77	3.43	1.33	2.07
0.78	3.46	1.35	2.02
0.80	3.48	1.37	1.98
0.82	3.50	1.38	1.94
0.83	3.51	1.40	1.90
0.85	3.51 <<	1.42	1.86
0.87	3.50	1.43	1.83
0.88	3.49	1.45	1.80
0.90	3.47	1.47	1.78
0.92	3.44		
0.93	3.41	End	
0.95	3.30	<i>EN</i> Q	
0.97	3.34		
0.90	3.29		
1.00	3.20		
1.02	0.ZU 0.15		
1.03	3.10		
1.00	2.10		
1.07	3.04		

Tuesday, Jul 23 2013, 10:23 AM

Hydrograph Summary Report

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Maximum storage (cuft)	Hydrograph description
1	SCS Runoff	7.98	1	37	21,496	****			Pre Dev - 1 hr.
2	SCS Runoff	7.64	1	46	30,862				Pre Dev - 2 hr.
3	SCS Runoff	6.85	1	50	37,039				Pre Dev - 3 hr.
4	SCS Runoff	4.51	1	87	47,257				Pre Dev - 6 hr.
5	SCS Runoff	3.80	1	326	58,701				Pre Dev - 12 hr.
6	SCS Runoff,	2.96	1	937	73,765				Pre Dev - 24 hr.
130 [,]	11pre.gpw				Return	Period: 1	00 Year	Tuesday,	Jul 23 2013, 10:23 AM

Tuesday, Jul 23 2013, 10:24 AM Hydraflow Hydrographs by Intelisoive

Hyd. No. 1

Pre Dev - 1 hr.

Hydrograph type= SCS RunoffStorm frequency= 100 yrsDrainage area= 5.72 acBasin Slope= 0.0 %Tc method= TR55Total precip.= 2.88 inStorm duration= 1 hrs	Peak discharge Time interval Curve number Hydraulic length Time of conc. (Tc) Distribution Shape factor	= 7.98 cfs = 1 min = 78 = 0 ft = 27.4 min = Huff-1st = 484
---	---	--

Hydrograph Discharge Table

Time (hrs	· Outflow cfs)	Time (hrs	Outflow cfs)
0.35	4.03	0.92	5.37
0.37	4.48	0.93	5.21
0.38	4.91	0.95	5.05
0.40	5.33	0.97	4.90
0.42	5.73	0.98	4.77
0.43	6.10	1.00	4.65
0.45	6.45	1.02	4.53
0.47	6.76	1.03	4.40
0.48	7.04	1.05	4.28
0.50	7.28	1.07	4.15
0.52	7.49	1.08	4.01
0.53	7.65		
0.55	7.78		
0.57	7.87	End	
0.58	7.94		
0.60	7.97		
0.62	7.98 <<		
0.63	7.96		
0.65	7.93		
0.67	7.87		
0.68	7.78		
0.70	7.68		
0.72	7.56		
0.73	7.41		
0.75	7.25		
0.77	7.07		
0.78	6.88		
0.80	6.69		
0.82	6.49		
0.83	6.29		
0.85	6.10		
0.87	5.91		
0.88	5.73		
0.90	5.55		

Hydrograph Volume = 21,496 cuft (Printed values >= 50% of Qp.)

Post-Developed Drainage Conditions

Project: COMMERCE BUSINESS PARK			JPH	Date:	7/19/13			
Location:		Checked:		. Date:				
Circle one:	Present Developed	Onsite Basin '1'						
1. Runoff curv	ve number (CN)							
	Cover Description							
Soil Name	(cover type, treatment, and		Area	Product				
and	hydrologic condition;	CN 1/	(in acres)	of				
Hydrologic	percent impervious;			CN x area				
Group	unconnected/connected							
	impervious area ratio							
'C'	Urban Disticts (Industrial) (60% impervious coverage)	89	5.72	509.1				
				0.0				
				0.0				
				0.0				
				0.0				
L		Totals=	5.72	509.1	,			
CN (weighted)) = <u>Total Product</u> = Total Area	509.1 5.72	=	89.00				

.

Hydraflow Hydrographs by Intelisolve

Hyd. No. 1

Post Dev - 1 hr.

Description		<u>A</u>		B		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)		0.150 100.0 2.64 0.80		0.011 0.0 2.64 0.00		0.011 0.0 0.00 0.00		
Travel Time (min)	1000 1000 1000	15.56		0.00	÷	0.00	exactif process	15.56
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)		850.00 0.50 Paved 1.44		0.00 0.00 Paved 0.00		0.00 0.00 Paved 0.00		
Travel Time (min)	2008	9.86	÷	0.00	4	0.00		9.86
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s) Flow length (ft)		0.00 0.00 0.00 0.012 0.00 0.0		0.00 0.00 0.00 0.015 0.00 0.0		0.00 0.00 0.00 0.015 0.00 0.0		
Travel Time (min)		0.00	+	0.00	÷	0.00	8039	0.00
Total Travel Time, Tc						**********		25.42 min

Pond Report

Hydraflow Hydrographs by Intelisolve

Pond No. 1 - Dry Detention

Pond Data

Pond storage is based on known contour areas. Average end area method used.

Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)	
0.00	735.00	00	0	0	
1.00	736.00	2,480	1,240	1,240	•
2.00	737.00	20,925	11,703	12,943	
3.00	738.00	33,400	27,163	40,105	
4.00	739.00	41,305	37,353	77,458	

Weir Structures

Culvert / Orifice Structures

	[A]	[B]	[C]	[D]		[A]	[B]	[C]	[D]
Rise (in)	= 12.00	2.00	5.00	0.00	Crest Len (ft)	= 11.70 = 737.70	0.00	0.00	0.00 0.00
Span (in) No. Barrels	= 12.00 = 1	2.00	1	0.00	Weir Coeff.	= 3.33	0.00	0.00	0.00
Invert El. (ft) Length (ft)	= 735.00 = 40.00	735.00 0.50	736.00 0.50	0.00 0.00	Weir Type Multi-Stage	= Riser = Yes	No	No	No
Slope (%) N-Value	= 0.30 = 011	0.50 .011	0.50 .013	0.00 .000					
Orif. Coeff.	= 0.60 = n/a	0.60 Yes	0.60 Yes	0.00 No	Exfiltration = 0).000 in/hr (Cor	ntour) Tai	lwater Elev	. = 0.00 ft

Note: Culvert/Orifice outflows have been analyzed under inlet and outlet control.

Stage I	Stage / Storage / Discharge Table												
Stage ft	Storage - cuft	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	Clv D cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	Total cfs	
0.00	n	735.00	0.00	0.00	0.00		0.00					0.00	
1.00	1 240	736.00	0.10	0.10	0.00		0.00					0.10	
2.00	12,943	737.00	0.72	0.13	0.58		0.00					0.71	
3.00	40,105	738.00	5.72	0.04	0.26	***	5.43					5.72	
4.00	77.458	739.00	7.07	0.01	0.04		7.00					7.04	

Tuesday, Jul 23 2013, 10:27 AM

PROJECT NAME: Commerce Business Park Emergency spillway calculation Pond

Peak 100 Yr. Inflow = 15 c.f.s. 1.25 x 15 c.f.s. = 18.8 Weir Equation: Q = C L H(3/2)Where Q = outflow L = length of weir C = discharge coefficient H = hydraulic head over weir 18.75 c.f.s. = 2.6 (L) 1 L = 7.212 ' Top of Bank 740.00 Depth of Water= 739.00 <----- 7.2 ' spillway ----> Top of Spill Elev. = 738.00

Hydrograph Summary Report

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Maximum storage (cuft)	Hydrograph description
1	SCS Runoff	3.56	1	36	9,390				Post Dev - 1 hr.
2	SCS Runoff	3.38	1	45	13,513				Post Dev - 2 hr.
3	SCS Runoff	2.95	1	52	16,096				Post Dev - 3 hr.
4	SCS Runoff	2.02	1	86	21,164				Post Dev - 6 hr.
5	SCS Runoff	1.85	1	326	28,619		10 m m m 10 M 10		Post Dev - 12 hr.
6	SCS Runoff	1.33	1	936	33,017				Post Dev - 24 hr.
7	Reservoir	0.51	1	83	9,382	1	736.57	7,904	Thru Pond - 1 hr.
8	Reservoir	0.61	1	136	13,504	2	736.77	10,207	Thru Pond - 2 hr.
9	Reservoir	0.64	1	189	16,087	3	736.82	10,876	Thru Pond - 3 hr.
10	Reservoir	0.64	1	210	21,156	4	736.83	10,916	Thru Pond - 6 hr.
11	Reservoir	0.72	1	481	28,610	5	737.02	13,387	Thru Pond - 12 hr.
12	Reservoir	0.69	1	1038	33,008	6	736.94	12,238	Thru Pond - 24 hr.
1301	l1post.gpw	Ŧ			Return I	Period: 2	Year	Tuesday,	Jul 23 2013, 10:25 AM

Hydraflow Hydrographs by intelisoive

Hyd. No. 1

Post Dev - 1 hr.

Hydrograph type	= SCS Runoff	Peak discharge	= 3.56 cfs
Storm frequency	= 2 yrs	Time interval	= 1 min
Drainage area	= 5.72 ac	Curve number	= 89
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 25.4 min
Total precip.	= 1.25 in	Distribution	= Huff-1st
Storm duration	= 1 hrs	Shape factor	= 484

Hydrograph Volume = 9,390 cuft

(Printed values >= 50% of Qp.)

Hydrograph Discharge Table

Time (hrs	Outflow cfs)	Time (hrs	Outflow cfs)
0.35	1.93	0.92	2.26
0.37	2.13	0.93	2.20
0.38	2.33	0.95	2.13
0.40	2.51	0.97	2.07
0.42	2.68	0.98	2.02
0.43	2.84	1.00	1.97
0.45	2.99	1.02	1.92
0.47	3.12	1.03	1.87
0.48	3.23	1.05	1.82
0.50	3.33		
0.52	3.40		
0.53	3.47	End	
0.55	3.51		
0.57	3.54		
0.58	3.56		
0.60	3.56 <<		
0.62	3.55		
0.63	3.53		
0.65	3.50		
0.67	3.46		
0.68	3.41		
0.70	3.34		
0.72	3.27		
0.73	3.19		
0.75	3.11		
0.77	3.01		
0.78	2.92		
0.80	2.82		
0.82	2.73		
0.83	2.65		
0.85	2.57		
0.87	2.49		
0.88	2.41		
0.90	2.33		

Tuesday, Jul 23 2013, 10:25 AM

Hydraflow Hydrographs by Intelisolve

Hyd. No. 5

Post Dev - 12 hr.

Hvdrograph type =	= SCS Runoff	Peak discharge	= 1.85 cfs
Storm frequency =	= 2 yrs	Time interval	= 1 min
Drainage area	= 5.72 ac	Curve number	= 89
Basin Šlope =	= 0.8 %	Hydraulic length	= 870 ft
Tc method =	= TR55	Time of conc. (Tc)	= 25.4 min
Total precip. =	= 2.40 in	Distribution	= Huff-2nd
Storm duration =	= 12 hrs	Shape factor	= 484

Hydrograph Discharge Table

Hydrograph Volume = 28,619 cuft

(Printed values >= 50% of Qp.)

ł

Time Outflow		Time	Outflow	Time	Outflow	Time Outflow		
(hrs	cfs)	(hrs	cfs)	(hrs	cfs)	(hrs	cts)	
3.92	0.93	4.48	1.48	5.05	1.83	5.62	1.75	
3.93	0.96	4.50	1.50	5.07	1.83	5.63	1.74	
3.95	0.97	4.52	1.52	5.08	1.83	5.65	1.72	
3.97	0.99	4.53	1.53	5.10	1.83	5.67	1.70	
3.98	1.01	4.55	1.55	5.12	1.83	5.68	1.68	
4.00	1.03	4.57	1.57	5.13	1.83	5.70	1.66	
4.02	1.05	4.58	1.59	5.15	1.83	5.72	1.64	
4.03	1.07	4.60	1.61	5.17	1.83	5.73	1.62	
4.05	1.08	4.62	1.62	5.18	1.83	5.75	1.60	
4.07	1.10	4.63	1.64	5.20	1.83	5.77	1.59	
4.08	1.11	4.65	1.65	5.22	1.83	5.78	1.57	
4.10	1.13	4.67	1.67	5.23	1.83	5.80	1.56	
4.12	1.14	4.68	1.68	5.25	1.83	5.82	1.54	
4.13	1.16	4.70	1.70	5.27	1.83	5.83	1.53	
4.15	1.17	4.72	1.71	5.28	1.83	5.85	1.52	
4.17	1.19	4.73	1.72	5.30	1.83	5.87	1.51	
4.18	1.20	4.75	1.74	5.32	1.83	5.88	1.50	
4.20	1.21	4.77	1.75	5.33	1.84	5.90	1.49	
4.22	1.22	4.78	1.76	5.35	1.84	5.92	1.48	
4.23	1.23	4.80	1.77	5.37	1.84	5.93	1.47	
4.25	1.25	4.82	1.78	5.38	1.84	5.95	1.46	
4.27	1.26	4.83	1.79	5.40	1.85	5.97	1.46	
4.28	1.27	4.85	1.80	5.42	1.85	5.98	1.45	
4.30	1.29	4.87	1.81	5.43	1.85 <<	6.00	1.45	
4.32	1.30	4.88	1.81	5.45	1.85	6.02	1.44	
4.33	1.31	4.90	1.82	5.47	1.84	6.03	1.44	
4.35	1.33	4.92	1.82	5.48	1.84	6.05	1.43	
4.37	1.34	4.93	1.82	5.50	1.83	6.07	1.43	
4.38	1.36	4.95	1.83	5.52	1.83	6.08	1.42	
4.40	1.38	4.97	1.83	5.53	1.82	6.10	1.42	
4.42	1.40	4.98	1.83	5.55	1.81	6.12	1.41	
4.43	1.42	5.00	1.83	5.57	1.80	6.13	1.40	
4.45	1.44	5.02	1.83	5.58	1.79	6.15	1.40	
4.47	1.46	5.03	1.83	5.60	1.77	6.17	1.39	

Continues on next page ...

Tuesday, Jul 23 2013, 10:26 AM

Hydraflow Hydrographs by Intelisolve

Hyd. No. 11

Thru Pond - 12 hr.

Hydrograph type	= Reservoir	Peak discharge	= 0.72 cfs
Storm frequency	= 2 yrs	Time interval	= 1 min
Inflow hyd. No.	= 5	Reservoir name	= Dry Detention
Max. Elevation	= 737.02 ft	Max. Storage	= 13,387 cuft

Storage Indication method used.

8.40

0.59

737.01

0.73

0.13

0.59

Hydrograph Discharge Table

Time (hrs)	Inflow cfs	Elevation ft	Clv A cfs	Civ B cfs	Clv C cfs	Clv D cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	Outflow cfs
7.72	0.79	737.01	0.73	0.13	0.59					455 107 456 km²		0.72
7.73	0.79	737.01	0.73	0.13	0.59							0.72
7.75	0.78	737.01	0.73	0.13	0.59							0.72
7.77	0.78	737.02	0.73	0.13	0.59							0.72
7.78	0.78	737.02	0.73	0.13	0.59							0.72
7.80	0.78	737.02	0.73	0.13	0.59							0.72
7.82	0.77	737.02	0.73	0.13	0.59							0.72
7.83	0.77	737.02	0.73	0.13	0.59				****			0.72
7.85	0.77	737.02	0.73	0.13	0.59		w				-	0.72
7.87	0.77	737.02	0.73	0.13	0.59							0.72
7.88	0.76	737.02	0.73	0.13	0.59							0.72
7.90	0.76	737.02	0.73	0.13	0.59							0.72
7.92	0.76	737.02	0.73	0.13	0.59							0.72
7.93	0.75	737.02	0.73	0.13	0.59		***					0.72
7.95	0.75	737.02	0.73	0.13	0.59							0.72
7.97	0.74	737.02	0.73	0.13	0.59							0.72
7.98	0.74	737.02	0.73	0.13	0.59							0.72
8.00	0.73	737.02	0.73	0.13	0.59		Ball this last last		B			0.72
8.02	0.72	737.02	0.73	0.13	0.59							0.72 <<
8.03	0.71	737.02	0.73	0.13	0.59							0.72
8.05	0.71	737.02	0.73	0.13	0.59			*****				0.72
8.07	0.70	737.02	0.73	0.13	0.59			***===				0.72
8.08	0.69	737.02	0.73	0.13	0.59							0.72
8.10	0.68	737.02	0.73	0.13	0.59							0.72
8.12	0.67	737.02	0.73	0.13	0.59							0.72
8.13	0.67	737.02	0.73	0.13	0.59							0.72
8.15	0.66	737.02	0.73	0.13	0.59	الما حدة الدرائية المة						0.72
8.17	0.65	737.02	0.73	0.13	0.59			*****				0.72
8.18	0.65	737.02	0.73	0.13	0.59							0.72
8.20	0.64	737.02	0.73	0.13	0.59							0.72
8.22	0.63	737.02	0.73	0.13	0.59							0.72
8.23	0.63	737.02	0.73	0.13	0.59							0.72
8.25	0.62	737.01	0.73	0.13	0.59							0.72
8.27	0.62	737.01	0.73	0.13	0.59					~~~~		0.72
8.28	0.61	737.01	0.73	0.13	0.59							0.72
8.30	0.61	737.01	0.73	0.13	0.59							0.72
8.32	0.61	737.01	0.73	0.13	0.59							0.72
8.33	0.60	737.01	0.73	0.13	0.59							0.72
8.35	0.60	737.01	0.73	0.13	0.59							0.72
8.37	0.60	737.01	0.73	0.13	0.59							0.72
8.38	0.59	737.01	0.73	0.13	0.59							0.72

Tuesday, Jul 23 2013, 10:26 AM

Outflow hydrograph volume = 28,610 cuft

(Printed values >= 75% of Qp.)

0.72

Hydrograph Summary Report

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Maximum storage (cuft)	Hydrograph description		
1	SCS Runoff	8.14	1	33	20,794				Post Dev - 1 hr.		
2	SCS Runoff	7.54	1	42	28,618				Post Dev - 2 hr.		
3	SCS Runoff	6.42	1	48	33,014				Post Dev - 3 hr.		
4	SCS Runoff	4.60	1	53	42,032				Post Dev - 6 hr.		
5	SCS Runoff	3.27	1	297	51,263				Post Dev - 12 hr.		
6	SCS Runoff	2.28	1	936	60,648	· '			Post Dev - 24 hr.		
7	Reservoir	0.78	1	85	20,785	1	737.19	18,049	Thru Pond - 1 hr.		
8	Reservoir	0.85	1	139	28,609	2	737.38	23,251	Thru Pond - 2 hr.		
9	Reservoir	0.87	1	196	33,006	3	737.44	24,957	Thru Pond - 3 hr.		
10	Reservoir	0.89	1	322	42,024	4	737.48	26,089	Thru Pond - 6 hr.		
11	Reservoir	0.91	1	549	51,254	5	737.56	28,214	Thru Pond - 12 hr.		
12	Reservoir	0.89	1	1100	60,631	6	737.48	26,064	Thru Pond - 24 hr.		
130	11post.gpv	v			Return	Period: 1	0 Year	Tuesday, Jul 23 2013, 10:25 AM			

Hydraflow Hydrographs by Intelisolve

Hyd. No. 1

Post Dev - 1 hr.

Hydrograph Volume = 20,794 cuft (Printed values >= 50% of Qp.)

nyulogiapii Discharge Tame			
Time (hrs	Outflow cfs)	Time (hrs	Outflow cfs)
0.32	4.43	0.88	4.73
0.33	4.93	0.90	4.57
0.35	5.40	0.92	4.41
0.37	5.82	0.93	4.26
0.38	6.21	0.95	4.12
0.40	6.57		
0.42	6.90		
0.43	7.19	End	
0.45	7.44		
0.47	7.66		
0.48	7.83	,	
0.50	7.97		
0.52	8.06		
0.53	8.12		
0.55	8.14 <<		
0.57	8.13		
0.58	8.09		
0.60	8.03		
0.62	7.93		
0.63	7.82		
0.65	7.69		
0.67	7.53		
0.68	7.30		
0.70	7.10		
0.72	0.94		
0.73	6.46		
0.75	6.20		
0.78	5.05		
0.70	5.71		
0.00	5 49		
0.82	5.28		
0.85	5.09		
0.87	4.91		

Hydrograph Discharge Table

Tuesday, Jul 23 2013, 10:25 AM
Hydraflow Hydrographs by Intelisolve

Hyd. No. 5

Post Dev - 12 hr.

Hydrograph type Storm frequency	= SCS Runoff = 10 vrs	Peak discharge Time interval	= 3.27 cfs = 1 min
Drainage area	= 5.72 ac	Curve number	= 89
Basin Slope	= 0.8 %	Hydraulic length	= 870 ft
Tc method	= TR55	Time of conc. (Tc)	= 25.4 min
Total precip.	= 3.60 in	Distribution	= Huff-2nd
Storm duration	= 12 hrs	Shape factor	= 484 .

Hydrograph Discharge Table

Hydrograph Volume = 51,263 cuft

Tuesday, Jul 23 2013, 10:26 AM

(Printed values >= 50% of Qp.)

Time Outflow		Time	Outflow	Time	Outflow	Time Outflow		
(hrs	cfs)	(hrs	cfs)	(hrs	cfs)	(hrs	cfs)	
3.80	1.65	4.37	2.56	4.93	3.27	5.50	3.16	
3.82	1.68	4.38	2.59	4.95	3.27 <<	5.52	3.15	
3.83	1.71	4.40	2.61	4.97	3.27	5.53	3.13	
3.85	1.75	4.42	2.64	4.98	3.27	5.55	3.11	
3.87	1.79	4.43	2.67	5.00	3.26	5.57	3.09	
3.88	1.83	4.45	2.70	5.02	3.26	5.58	3.06	
3.90	1.87	4.47	2.74	5.03	3.26	5.60	3.04	
3.92	1.90	4.48	2.77	5.05	3.25	5.62	3.01	
3.93	1.94	4.50	2.80	5.07	3.24	5.63	2.97	
3.95	1.97	4.52	2.83	5.08	3.24	5.65	2.94	
3.97	2.01	4.53	2.86	5.10	3.23	5.67	2.90	
3.98	2.04	4.55	2.89	5.12	3.23	5.68	2.86	
4.00	2.07	4.57	2.92	5.13	3.22	5.70	2.83	
4.02	2.10	4.58	2.94	5.15	3.22	5.72	2.80	
4.03	2.13	4.60	2.97	5.17	3.21	5.73	2.76	
4.05	2.16	4.62	3.00	5.18	3.21	5.75	2.73	
4.07	2.18	4.63	3.02	5.20	3.21	5.77	2.70	
4.08	2.21	4.65	3.04	5.22	3.20	5.78	2.67	
4.10	2.23	4.67	3.07	5.23	3.20	5.80	2.65	
4.12	2.26	4.68	3.09	5.25	3.20	5.82	2.62	
4.13	2.28	4.70	3.11	5.27	3.20	5.83	2.60	
4.15	2.30	4.72	3.13	5.28	3.20	5.85	2.58	
4.17	2.32	4.73	3.15	5.30	3.20	5.87	2.56	
4.18	2.34	4.75	3.16	5.32	3.19	5.88	2.54	
4.20	2.36	4.77	3.18	5.33	3.19	5.90	2.52	
4.22	2.38	4.78	3.20	5.35	3.19	5.92	2.50	
4.23	2.40	4.80	3.21	5.37	3.20	5.93	2.49	
4.25	2.41	4.82	3.23	5.38	3.20	5.95	2.47	
4.27	2.43	4.83	3.24	5.40	3.20	5.97	2.46	
4.28	2.45	4.85	3.25	5.42	3.20	5.98	2.45	
4.30	2.47	4.87	3.25	5.43	3.19	6.00	2.44	
4.32	2.49	4.88	3.26	5.45	3.19	6.02	2.43	
4.33	2.51	4.90	3.26	5.47	3.18	6.03	2.42	
4.35	2.54	4.92	3.27	5.48	3.17	6.05	2.41	

Continues on next page ...

Hydraflow Hydrographs by Intelisolve

Hyd. No. 11

Thru Pond - 12 hr.

Storage Indication method used.

Hydrograph Discharge Table

Time (hrs)	Inflow cfs	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	Clv D cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	Outflow cfs
8.83	0.95	737.56	0.91	0.15	0.76							0.91
8 85	0.95	737.56	0.91	0.15	0.76							0.91
8.87	0.95	737.56	0.91	0.15	0.76							0.91
8.88	0.96	737.56	0.91	0.15	0.76							0.91
8.90	0.96	737.56	0.91	0.15	0.76							0.91
8.92	0.96	737.56	0.91	0.15	0.76							0.91
8.93	0.96	737.56	0.91	0.15	0.76							0.91
8.95	0.96	737.56	0.91	0.15	0.76							0.91
8.97	0.96	737.56	0.91	0.15	0.76	ALL ALL 300 PD 110	*****					0.91
8.98	0.96	737.56	0.91	0.15	0.76							0.91
9.00	0.96	737.56	0.91	0.15	0.76							0.91
9.02	0.96	737.56	0.91	0.15	0.76							0.91
9.02	0.95	737.56	0.91	0.15	0.76							0.91
9.05	0.95	737.56	0.91	0.15	0.76							0.91
9.07	0.95	737.56	0.91	0.15	0.76							0.91
9.08	0.94	737.56	0.91	0.15	0.76							0.91
9 10	0.94	737.56	0.91	0.15	0.76							0.91
9.12	0.93	737.56 <<	0.91	0.15	0.76							0.91
9.13	0.92	737.56 <<	0.91	0.15	0.76							0.91
9 15	0.92	737.56	0.91	0.15	0.76							0.91 <<
9 17	0.91	737.56	0.91	0.15	0.76							0.91
9.18	0.90	737.56 <<	0.91	0.15	0.76							0.91
9.20	0.89	737.56 <<	0.91	0.15	0.76							0.91
9.22	0.87	737.56	0.91	0.15	0.76		=					0.91
9.23	0.86	737.56	0.91	0.15	0.76							0.91
9.25	0.85	737.56	0.91	0.15	0.76							0.91
9.27	0.83	737.56	0.91	0.15	0.76							0.91
9.28	0.82	737.56	0.91	0.15	0.76	-						0.91
9.30	0.80	737.56	0.91	0.15	0.76							0.91
9.32	0.79	737.56	0.91	0.15	0.76							0.91
9.33	0 78	737.56	0.91	0.15	0.76							0.91
9.35	0.77	737.56	0.91	0.15	0.76							0.91
9.37	0.75	737.56	0.91	0.15	0.76							0.91
9.38	0 74	737.56	0.91	0.15	0.76							0.91
9.00	0.73	737.56	0.91	0.15	0.76							0.91
9.42	0.72	737.56	0.91	0.15	0.76		*****					0.91
9.43	0.71	737.56	0.91	0.15	0.76							0.91
9.45	0.71	737.56	0.91	0.15	0.76							0.91
9.47	0 70	737.56	0.91	0.15	0.76							0.91
9,48	0.69	737.56	0.91	0.15	0.76					Conner	 HS (7/102	0.91

Tuesday, Jul 23 2013, 10:26 AM

Outflow hydrograph volume = 51,254 cuft

(Printed values >= 75% of Qp.)

Hydrograph Summary Report

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Maximum storage (cuft)	Hydrograph description
1	SCS Runoff	15.00	1	32	37,435				Post Dev - 1 hr.
2	SCS Runoff	13.44	1	39	49,308				Post Dev - 2 hr.
3	SCS Runoff	11.48	1	44	56,513				Post Dev - 3 hr.
4	SCS Runoff	8.40	1	50	68,953				Post Dev - 6 hr.
5	SCS Runoff	5.17	1	294	82,140				Post Dev - 12 hr.
6	SCS Runoff	3.55	1	936	99,093				Post Dev - 24 hr.
7	Reservoir	1.58	1	83	37,426	1	737.75	33,321	Thru Pond - 1 hr.
8	Reservoir	3,30	1	114	49,299	2	737.85	36,149	Thru Pond - 2 hr.
9	Reservoir	3.34	1	113	56,504	3	737.86	36,207	Thru Pond - 3 hr.
10	Reservoir	3.19	1	166	68,944	4	737.85	36,006	Thru Pond - 6 hr.
11	Reservoir	3.35	1	376	82,131	5	737.86	36,229	Thru Pond - 12 hr.
12	Reservoir	3,00	1	955	99,033	6	737.84	35,753	Thru Pond - 24 hr.
1301	11post.gpw	Ipost.gpw Return Period: 100 Year Tuesday, Jul 23 2013, 10:25 A				Jul 23 2013, 10:25 AM			

Hydraflow Hydrographs by Intelisolve

Hyd. No. 1

Post Dev - 1 hr.

Hydrograph type	 SCS Runoff 100 yrs 5.72 ac 0.0 % TR55 2.88 in 1 hrs 	Peak discharge	= 15.00 cfs
Storm frequency		Time interval	= 1 min
Drainage area		Curve number	= 89
Basin Slope		Hydraulic length	= 0 ft
Tc method		Time of conc. (Tc)	= 25.4 min
Total precip.		Distribution	= Huff-1st
Storm duration		Shape factor	= 484
Storm duration	- 1118	Shape factor	
Tc method	= TR55	Time of conc. (Tc)	= 25.4 min
Total precip.	= 2.88 in	Distribution	= Huff-1st
Storm duration	= 1 hrs	Shape factor	= 484

Hydrograph Volume = 37,435 cuft

(Printed values >= 50% of Qp.)

Hydrograph Discharge Table									
Time (hrs	Outflow cfs)	Time (hrs	Outflow cfs)						
0.30	8.37	0.87	8.13						
0.32	9.33	0.88	7.81						
0.33	10.22	0.90	7.52						
0.35	11.04								
0.37	11.74								
0.38	12.38	End							
0.40	12.96								
0.42	13.46								
0.43	13.89								
0.45	14.26								
0.47	14.55								
0.48	14.77								
0.50	14.92								
0.52	14.98								
0.53	15.00 <<								
0.55	14.95								
0.57	14.84								
0.58	14.69								
0.60	14.49								
0.62	14.24								
0.63	13.96								
0.65	13.65								
0.67	13.29								
0.68	12.91								
0.70	12.48								
0.72	12.02								
0.73	11.54								
0.75	11.04								
0.77	10.53								
0.78	10.04								
0.80	9.59								
0.82	9,19								
0.83	0.01								
0.85	0,40		-						

Tuesday, Jul 23 2013, 10:25 AM

Hydraflow Hydrographs by Intelisolve

Hyd. No. 5

Post Dev - 12 hr.

Hydrograph type= SCS RundStorm frequency= 100 yrsDrainage area= 5.72 acBasin Slope= 0.8 %Tc method= TR55Total precip.= 5.16 inStorm duration= 12 hrs	off Peak discharge Time interval Curve number Hydraulic length Time of conc. (Tc) Distribution Shape factor		5.17 cfs 1 min 89 870 ft 25.4 min Huff-2nd 484	
--	---	--	--	--

Hydrograph Discharge Table

Hydrograph Volume = 82,140 cuft

(Printed values >= 50% of Qp.)

Time Outflow		Time	Outflow	Time	Outflow	Time Outflow		
(hrs	cfs)	(hrs	cfs)	(hrs	cfs)	(hrs	cfs)	
3 70	2.60	4.27	4.03	4.83	5.15	5.40	4.96	
3.72	2.63	4.28	4.05	4.85	5.16	5.42	4.95	
3 73	2.67	4.30	4.08	4.87	5.16	. 5.43	4.94	
3 75	2 70	4.32	4.11	4.88	5.17	5.45	4.93	
377	2 75	4.33	4.13	4.90	5.17 <<	5.47	4.92	
3.78	2 79	4.35	4.17	4.92	5.17	5.48	4.90	
3.80	2.84	4.37	4.20	4.93	5.17	5.50	4.88	
3.82	2.89	4.38	4,24	4.95	5.16	5.52	4.86	
3.83	2.95	4.40	4.28	4.97	5.16	5.53	4.83	
3.85	3.01	4.42	4.32	4.98	5.15	5.55	4.80	
3.87	3.07	4.43	4.36	5.00	5.14	5.57	4.76	
3.88	3 13	4.45	4.41	5.02	5.13	5.58	4.72	
3.90	3.19	4.47	4.46	5.03	5.12	5.60	4.68	
3.92	3.24	4.48	4.50	5.05	5.11	5.62	4.63	
3.93	3 30	4.50	4.55	5.07	5.10	5.63	4.58	
3.95	3.35	4.52	4.59	5.08	5.08	5.65	4.52	
3.97	3.40	4.53	4.63	5.10	5.07	5.67	4.46	
3.98	3.45	4.55	4.68	5.12	5.06	5.68	4.40	
4 00	3.50	4.57	4.72	5.13	5.05	5.70	4.35	
4 02	3.55	4.58	4.75	5.15	5.04	5.72	4.29	
4.03	3.59	4.60	4.79	5.17	5.03	5.73	4.24	
4.05	3.63	4.62	4.83	5.18	5.02	5.75	4.19	
4 07	3.67	4.63	4.86	5.20	5.01	5.77	4.15	
4.08	3.71	4.65	4.89	5.22	5.00	5.78	4.10	
4 10	3.75	4.67	4.92	5.23	4.99	5.80	4.06	
4 12	3.78	4.68	4.95	5.25	4.99	5.82	4.02	
4 13	3.82	4.70	4.98	5.27	4.98	5.83	3.98	
4 15	3.85	4.72	5.01	5.28	4.98	5.85	3.95	
4 17	3.87	4.73	5.03	5.30	4.97	5.87	3.91	
4 18	3.90	4.75	5.06	5.32	4.97	5.88	3.88	
4.20	3.92	4.77	5.08	5.33 ′	4.96	5.90	3.85	
4.22	3.95	4.78	5.10	5.35	4.96	5.92	3.83	
4 23	3.97	4.80	5.12	5.37	4.96	5.93	3.80	
4 25	4.00	4.82	5.13	5.38	4.96	5.95	3.78	

Continues on next page...

Tuesday, Jul 23 2013, 10:26 AM

Hydraflow Hydrographs by Intelisolve

Hyd. No. 11

Thru Pond - 12 hr.

Hydrograph type =	Reservoir	Peak discharge	= 3.35 cfs
Storm frequency =	= 100 yrs	Time interval	= 1 min
Inflow hyd. No. =	= 5	Reservoir name	= Dry Detention
Max. Elevation =	= 737.86 ft	Max. Storage	= 36,229 cuft

Storage Indication method used.

Hydrograph Discharge Table

Wr B Wr C Wr D Exfil Outflow Clv C Clv D Wr A Elevation Clv A CI_VB Time Inflow cfs (hrs) cfs ft 2.58 0.13 0.79 1.66 5.78 4.10 737.82 2.58 -----____ ----____ 2.650.13 0.79 1.73 ____ 5.80 4.06 737.82 2.65 ____ _____ ----____ 2.71 0.78 1.80 5.82 4.02 737.83 2.710.13 _____ ____ ----____ 2.76 5.83 3.98 737.83 2.76 0.13 0.77 _____ 1.86 ----------2.82 1.92 5.85 3.95 737.83 2.82 0.12 0.77 ____ ____ ____ _ _ _ _ _ ----2.87 1.98 ----5.87 3.91 737.83 2.87 0.12 0.77 -------------2.91 2.03 5.88 3.88 737.84 2.91 0.12 0.76 ____ ____ ***** _ 2.95 0.76 2.07 ____ 5.90 3.85 737.84 2.95 0.12 ----____ ----2.99 0.75 2.12 ____ 5.92 3.83 737.84 2.99 0.12 -----____ --------3.03 2.16 ____ 5.93 3.80 737.84 3.03 0.12 0.75 ____ _____ ____ ____ 3.06 2.19 5.95 3.78 737.84 3.06 0.12 0.75 -----____ ____ ____ ----3.09 2.23 --------737.84 3.09 0.12 0.74 ____ ____ 5.97 3.76 3.12 0.74 2.26 3.12 0.12 ____ -----____ 5.98 3.74 737.85 ---------3.15 3.73 737.85 3.15 0.12 0.74 ----2.29 ____ ____ ----6.00 ____ 3.17 3.71 737.85 3.17 0.12 0.74 ----2.32_____ ____ -----6.02 3.20 3.20 0.12 0.73 2.34 ----____ 3.70 737.85 --------------6.03 3.22 2.37 6.05 3.22 0.12 0.73 _____ 3.68 737.85 ____ ____ ____ 3.24 3.24 0.12 0.73 2.39 ----____ 6.07 3.67 737.85 ____ ____ 3.26 3.26 0.12 0.73 2.41_____ ____ 6.08 3.65 737.85 ____ 3.27 0.12 0.73 2.43 ____ ----6.10 3.63 737.85 3.27 ____ _____ ----3.29 0.73 2.45 6.12 3.62 737.85 3.29 0.12 -----_____ ____ -----3.30 3.60 737.85 3.30 0.12 0.72 _____ 2.46--------____ 6.13 3.32 3.32 0.12 0.72 2.48 ____ ____ ____ -----6.15 3.57 737.86 3.33 3.33 0.12 0.72 2.49 ____ _____ ____ 6.17 3.55 737.86 ***** 3.34 737.86 3.34 0.12 0.72 ____ 2.50 ----_____ _____ _____ 3.52 6.18 3.34 3.34 0.12 0.72 _____ 2.51 ____ -----3.49 737.86 6.20 3.35 3.35 0.12 0.72 -----2.51 ____ _____ 3.45 737.86 -----____ 6.22 3.35 0.72 ____ 2.52 _____ ____ 3.42 737.86 3.35 0.12 ---------6.23 3.35 3.35 0.12 0.72 2.52-----3.38 737.86 ----____ ----_____ 6.25 3.35 << 3.35 0.12 0.72 2.52 ____ -----737.86 _____ ____ 6.27 3.34 _____ 3.35 3.35 0.12 0.72 ____ 2.52 -----3.30 ____ 6.28 737.86 ____ _____ 3.35 0.72 2.51 _____ 737.86 3.35 0.12 _____ _____ ____ 6.30 3.26 ____ 3.34 737.86 3.35 0.72 ____ 2.51____ 0.12 ____ ____ 3.22 6.32 3.34 0.72 2.503.34 0.12 -----____ 737.86 -----6.33 3.19 ____ ----3.33 2.49 3.33 0.72 3.15 737.86 0.12 --------____ ---------6.35 3.32 3.32 0.12 0.72 2.48 _____ ____ 3.12 737.86 _____ ____ ----6.37 2.47 3.31 3.31 0.12 0.72 ---------737.86 _____ 6.38 3.09 2.46 3.30 0.72 _____ 6.40 3.06 737.85 3.30 0.12 -----

Continues on next page ...

Tuesday, Jul 23 2013, 10:26 AM

Outflow hydrograph volume = 82,131 cuft

(Printed values >= 75% of Qp.)

Water Quality Calculations

Project N	lame: (COMMER	Proj	Project # 13011					
Water Qua	lity - Dry De	tention Po	nd						
Option #1									
20% of Runo	ff from a 1.25" s	storm event							
	Volume=	9,400 c.	f. X 0.20 =	1,880	C.f.				
Option #2	andalahalayo da kalang bergi mangana ang kalang bergi mang kalang bergi mang kalang bergi mang kalang bergi ma	<u></u>	anan (1963-13	<u>- yı</u>	<u></u>	an an an ang pangkapang anako			nder
20% of a 0.50	0" direct runoff								
Volume =	5.72 a	ic. <u>X</u>	(43560 s.f.	<u>X 144 sin.</u> 1 s.f.	X 0.50-in	I			
a	17,939,750 c	.in =	10,382	c.f.					
=	10,382 c	.f. X 0.20 =	2,076	c.f. <== US	E				
Pe	ak storm event	happens at	1.32	inch storm	event	······································	400-0		
	Storm event the Peal	at provides < occurs at	2,076 14.65	c.f. is a hrs for the	1.32 1.32	inch storm inch storm	event event	- wan	
	14.65 h	nrs + 6.0 hrs =	:	20.65	hrs				
	Pond I	Elevation at	20.65	hrs =	736.10		n.p.	735.00	
	Pond Storage	• Volume at	20.65	hrs =	4,576	c.f. <	2,076	c.f.	
						<u> </u>	= _	1.10 4,576	<u> </u>
	14.65 1	nrs + 12.0 hrs	=	26.65	hrs				
	Pond	Elevation at	26.65	hrs =	735.79)	n.p.	735.00	
	Pond Storage	• Volume at	26.65	hrs ≠	980) c.f. <	2,076	c.f.	
						1 1,240	≖ .	0.79 980	-
	14.65 ł	nrs + 24.0 hrs	=	38.65	hrs				
	Pond	Elevation at	38.65	hrs =	735.00)	n.p.	735.00	
	Pond Storage	e Volume at	38.65	hrs =	C) c.f. <	0	c.f.	
						1,240		0.00	igna.st

Minimum 2" wq orifice used

Hydrograph Summary Report

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Maximum storage (cuft)	Hydrograph description
1	SCS Runoff	0.33	1	650	9,400			B-07-7	WQ 1.25IN EVENT
2	SCS Runoff	0.36	3	651	10,351				WQ 0.5IN EVENT
3	Reservoir	0,19	3	879	10,342	2 .	736.18	3,355	Thru Pond - 1 hr.
9 9									
						- <u>-</u>			
1	n y bi bi bigan ya kata								
			-						
4 P 4 4 4									
1301	l1post-wq.	gpw	. I		Return	Period: 2	Year	Tuesday,	Jul 23 2013, 11:15 AM

Hydraflow Hydrographs by Intelisolve

Hyd. No. 2

WQ 0.5IN EVENT

SCS Runoff
2 yrs
5.72 ac
0.8 %
TR55
1.32 in
24 hrs

Hydrograph Discharge Table

Tuesday, Jul 23 2013, 11:16 AM

Peak discharge	= 0.36 cfs
Time interval	= 3 min
Curve number	= 89
Hydraulic length	= 870 ft
Time of conc. (Tc)	= 25.4 min
Distribution	= Huff-2nd
Shape factor	= 484

Hydrograph Volume = 10,351 cuft

(Printed values >= 50% of Qp.)

Time Outflow		Time	Outflow	Time	Outflow	Time Outflow			
(hrs	cfs)	(hrs	cfs)	(hrs	cfs)	(hrs	cfs)		
8.35	0.18	10.05	0.32	11.75	0.28	13.45	0.22		
8.40	0.18	10.10	0.33	11.80	0.28	13.50	0.22		
8.45	0.19	10.15	0.33	11.85	0.29	13.55	0.21		
8.50	0.19	10.20	0.33	11.90	0.29	13.60	0.21		
8.55	0.20	10.25	0.33	11.95	0.29	13.65	0.21		
8.60	0.21	10.30	0.33	12.00	0.29	13.70	0.20		
8.65	0.21	10.35	0.33	12.05	0.29	13.75	0.20		
8.70	0.22	10.40	0.34	12.10	0.29	13.80	0.20		
8.75	0.23	10.45	0.34	12.15	0.28	13.85	0.20		
8.80	0.24	10.50	0.34	12.20	0.28	13.90	0.20		
8.85	0.25	10.55	0.34	12.25	0.27	13.95	0.20		
8.90	0.25	10.60	0.35	12.30	0.26	14.00	0.20		
8.95	0.26	10.65	0.35	12.35	0.25	14.05	0.20		
9.00	0.27	10.70	0.35	12.40	0.25	14.10	0.20		
9.05	0.27	10.75	0.35	12.45	0.24	14.15	0.20		
9.10	0.28	10.80	0.36	12.50	0.24	14.20	0.20		
9.15	0.28	10.85	0.36 <<	12.55	0.23	14.25	0.20		
9.20	0.29	10.90	0.35	12.60	0.23	14.30	0.20		
9.25	0.29	10.95	0.35	12.65	0.23	14.35	0.20		
9.30	0.29	11.00	0.34	12.70	0.23	14.40	0.20		
9.35	0.30	11.05	0.34	12.75	0.23	14.45	0.20		
9.40	0.30	11.10	0.32	12.80	0.23	14.50	0.20		
9.45	0.31	11.15	0.31	12.85	0.23	14.55	0.20		
9.50	0.31	11.20	0.31	12.90	0.23	14.60	0.19		
9.55	0.31	11.25	0.30	12.95	0.23	14.65	0.19		
9.60	0.32	11.30	0.29	13.00	0.23	14.70	0.18		
9.65	0.32	11.35	0.29	13.05	0.23	14.75	0.18		
9.70	0.32	11.40	0.28	13.10	0.23				
9.75	0.32	11.45	0.28	13.15	0.23				
9.80	0.32	11.50	0.28	13.20	0.23	End			
9.85	0.32	11.55	0.28	13.25	0.23				
9.90	0.32	11.60	0.28	13.30	0.23				
9.95	0.32	11.65	0.28	13.35	0.23				
10.00	0.32	11.70	0.28	13.40	0.22				

Hydraflow Hydrographs by Intelisolve

Hyd. No. 3

Thru Pond - 1 hr.

Hydrograph type	= Reservoir	Peak discharge	= 0.19 cfs
Storm frequency	= 2 yrs	Time interval	= 3 min
Inflow hyd. No.	= 2	Reservoir name	= Dry Detention
Max. Elevation	= 736.18 ft	Max. Storage	= 3,355 cuft

Storage Indication method used.

Hydrograph Discharge Table

Tuesday, Jul 23 2013, 11:14 AM

Outflow hydrograph volume = 10,342 cuft

(Printed values >= 1% of Qp.)

Time (hrs)	Inflow cfs	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	Clv D cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	Outflow cfs
6.20	0.02	735.02	0.00	0.00								0.00
6.25	0.02	735.02	0.00	0.00								0.00
6.30	0.03	735.02	0.00	0.00								0.00
6.35	0.03	735.03	0.00	0.00								0.00
6.40	0.03	735.03	0.00	0.00								0.00
6.45	0.03	735.03	0.00	0.00		. =====						0.00
6.50	0.04	735.04	0.01	0.01								0.01
6.55	0.04	735.04	0.01	0.01								0.01
6.60	0.04	735.05	0.01	0.01								0.01
6.65	0.04	735.05	0.01	0.01								0.01
6.70	0.05	735.06	0.01	0.01								0.01
6 75	0.05	735.06	0.01	0.01								0.01
6 80	0.05	735.07	0.01	0.01								0.01
6.85	0.05	735.08	0.01	0.01								0.01
6.90	0.06	735.08	0.01	0.01								0.01
6.95	0.06	735.09	0.01	0.01								0.01
7 00	0.06	735.10	0.01	0.01								0.01
7.05	0.06	735.10	0.01	0.01			6					0.01
7 10	0.06	735.11	0.02	0.02								0.02
7 15	0.07	735.12	0.02	0.02								0.02
7 20	0.07	735.12	0.02	0.02								0.02
7 25	0.07	735.13	0.02	0.02								0.02
7.30	0.08	735.14	0.02	0.02	4							0.02
7.35	0.08	735.15	0.02	0.02								0.02
7 40	0.09	735.16	0.03	0.03	*****							0.03
7 45	0.09	735.16	0.03	0.03								0.03
7.50	0.10	735.17	0.03	0.03								0.03
7 55	0.11	735.18	0.03	0.03								0.03
7 60	0.11	735.20	0.03	0.03								0.03
7 65	0.12	735.21	0.04	0.04								0.04
7.70	0.13	735.22	0.04	0.04								0.04
7.75	0.13	735.23	0.04	0.04								0.04
7 80	0.14	735.25	0.04	0.04								0.04
7.85	0.14	735.26	0.04	0.04								0.04
7.90	0.15	735.28	0.04	0.04								0.04
7.95	0.15	735.29	0.05	0.05								0.05
8.00	0.15	735.31	0.05	0.05								0.05
8.05	0.16	735.32	0.05	0.05							шыөын	0.05

Continues on next page ...

Hydrograph Discharge Table

Time (hrs)	Inflow cfs	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	Civ D cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	Outflow cfs
18.30	0.11	736.14	0.16	0.10	0.06							0.16
18.35	0.11	736.14	0.16	0.10	0.06							0.16
18.40	0.10	736.14	0.16	0.10	0.06							0.16
18.45	0.10	736.14	0.16	0.10	0.06							0.16
18.50	0.09	736.14	0.16	0.10	0.06							0.16
18.55	0.09	736.14	0.16	0.10	0.05							0.16
18.60	0.09	736.14	0.16	0.10	0.05	~~~~						0.16
18.65	0.09	736.13	0.16	0.10	0.05							0.15
18.70	0.09	736.13	0.16	0.10	0.05					IN IS. IN IN IT		0.15
18.75	0.09	736.13	0.16	0.10	0.05							0.15
18.80	0.09	736.13	0.16	0.10	0.05							0.15
18.85	0.09	736.13	0.16	0.10	0.05							0.15
18.90	0.09	736.13	0.15	0.10	0.05							0.15
18.95	0.09	736.13	0.15	0.10	0.05							0.15
19.00	0.09	736.13	0.15	0.10	0.05							0.15
19.05	0.09	736.13	0.15	0.10	0.05		MARES					0.15
19.10	0.09	736.13	0.15	0.10	0.05							0.15
19.15	0.09	730.13	0.15	0.10	0.05							0.15
19.20	0.09	736.12	0.15	0.10	0.05							0.10
19.25	0.09	730.12	0.15	0.10	0.04					*****		0.15
19.30	0.09	730.12	0.10	0.10	0.04							0.15
19.35	0.09	730.12	0.15	0.10	0.04							0.14
19.40	0.09	730.12	0.15	0.10	0.04							0.14
19.45	0.09	730.12	0.15	0.10	0.04		~~~					0.14
19.00	0.09	730.12	0.15	0.10	0.04							0.14
19.00	0.09	700.1Z	0.15	0.10	0.04							0.14
19.00	0.09	730.12	0.15	0.10	0.04		~~==~					0.14
19.00	0.09	730.12	0.14	0.10	0.04							0.14
19.70	0.09	730.12	0.14	0.10	0.04							0.14
10.70	0.09	730.11	0.14	0.10	0.04		~~~~					0.14
19.00	0.09	736.11	0.14	0.10	0.04							0.14
10.00	0.09	730.11	0.14	0.10	0.04							0.14
10.05	0.09	736.11	0.14	0.10	0.04				· ,			0.14
20.00	0.09	736 11	0.14	0.10	0.04							0.14
20.00	0.09	736 11	0.14	0.10	0.04							0.14
20.00	0.09	736 11	0.14	0.10	0.04							0.14
20.10	0.09	736.11	0.14	0.10	0.00							0.14
20.10	0.09	736 11	0.14	0.10	0.03							0.14
20.20	0.09	736 11	0.14	0.10	0.00							0.13
20.20	0.09	736 11	0.14	0.10	0.00							0.13
20.00	0.05	736.11	0.14	0.10	0.00							0.13
20.33	0.03	736 11	0.14	0.10	0.00							0.13
20.40	0.00	736.10	0.14	0.10	0.00							0.13
20.40	0.00	736 10	0.14	0.10	0.00							0.13
20.50	0.05	736.10	0.14	0.10	0.00						, en au an ; en ; en au	0.13
20.00	0.00	736 10	0.13	0.10	0.03							0.13
120.65	0.00	736 10	0.13	0.10	0.03				10 W 10 B-10			0.13
20.00	0.00	736 10	0.13	0.10	0.03							0.13
20.75	0.00	736 10	0.13	0.10	0.03							0.13
20.80	0.09	736.10	0.13	0.10	0.03							0.13
20.00	0.00											

Continues on next page...

,

Hydrograph Discharge Table

Time (hrs)	Inflow cfs	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	Clv D cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	Outflow cfs
25.95	0.00	735.98	0.10	0.10								0.10
26.00	0.00	735.97	0.10	0.10								0.10
26.05	0.00	735.96	0.10	0.09			*****	*****				0.09
26.10	0.00	735.94	0.10	0.09						*****		0.09
26.15	0.00	735.93	0.10	0.09								0.09
26.20	0.00	735.92	0.10	0.09								0.09
26.25	0.00	735.90	0.10	0.09								0.09
26.30	0.00	735.89	0.10	0.09								0.09
26.35	0.00	735.88	0.09	0.09								0.09
26.40	0.00	735.86	0.09	0.09								0.09
26.45	0.00	735.85	0.09	0.09								0.09
26.50	0.00	735.84	0.09	0.09								0.09
26.55	0.00	735.82	0.09	0.09					*****			0.09
26.60	0.00	735.81	0.09	0.09								0.09
26.65	0.00	735.80	0.09	0.09								0.09
26.70	0.00	735.79	0.09	0.08					FIL VIL DIE 177 DI			0.08
26.75	0.00	735.78	0.09	0.08								0.08
26.80	0.00	735.76	0.09	0.08								0.08
26.85	0.00	735.75	0.09	80.0								0.08
26.90	0.00	735.74	0.09	0.08								0.08
26.95	0.00	735.73	0.08	0.08								0.08
27.00	0.00	735.72	0.08	0.08								0.08
27.05	0.00	735.70	0.08	0.08								0.08
27.10	0.00	735.69	0.08	0.08								0.08
27.15	0.00	735.68	0.08	0.08								0.08
27.20	0.00	735.67	0.08	0.08								0.08
27.25	0.00	735.66	0.08	0.08								0.08
27.30	0.00	735.65	0.08	0.08								0.08
27.35	0.00	735.64	0.08	0.07								0.07
27.40	0.00	735.63	0.08	0.07								0.07
27.45	0.00	735.62	0.08	0.07								0.07
27.50	0.00	735.61	0.08	0.07								0.07
27.55	0.00	735.59	0.08	0.07								0.07
27.60	0.00	735.58	0.08	0.07								0.07
27.65	0.00	735.57	0.07	0.07			*****					0.07
27.70	0.00	735.56	0.07	0.07								0.07
27.75	0.00	735.55	0.07	0.07								0.07
27.80	0.00	735.54	0.07	0.07			PR 78 79 37 88					0.07
27.85	0.00	735.53	0.07	0.07								0.07
27.90	0.00	735.52	0.07	0.07								0.07
27.95	0.00	735.52	0.07	0.07								0.07
28.00	0.00	735.51	0.07	0.07								0.07
28.05	0.00	735.50	0.07	0.06								0.06
28.10	0.00	735.49	0.06	0.06								0.06
28.15	0.00	735.48	0.06	0.06								0.06
28.20	0.00	735.47	0.06	0.06								0.06
28.25	0.00	735.46	0.06	0.06								0.06
28.30	0.00	735.45	0.06	0.06								0.06
28.35	0.00	735.44	0.06	0.06								0.06
28.40	0.00	735.43	0.06	0.06								0.06
28.45	0.00	735.42	0.06	0.06								0.06

Continues on next page...

ı.

Thru Pond - 1 hr.

Hydrograph Discharge Table

Time (hrs)	Inflow cfs	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	Clv D cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	Outflow cfs
36.15	0.00	735.02	0.00	0.00								0.00
36.20	0.00	735.02	0.00	0.00								0.00
36.25	0.00	735.02	0.00	0.00				30000				0.00
36.30	0.00	735.01	0.00	0.00				*****				0.00
36.35	0.00	735.01	0.00	0.00								0.00
36.40	0.00	735.01	0.00	0.00								0.00
36.45	0.00	735.01	0.00	0.00								0.00
36.50	0.00	735.01	0.00	0.00					``			0.00

...End

\$ OUTFROW

N

,

Storm Sewer Calculations Building #2

men	ce Business Park	- Bui	ilding	#1			Stor	m S	ewel	r Calc	ulation	IS
				Desc.	Soil	Ac.		CN		CNxAc) .	
STR. #	Runoff curve num	ber (CN)		Imp.	(PR.)	0.09	x	98	=	9		
604				Imp.	(fut)	0.91	x	98	=	89		
				Lawn	'C'	0.67	x	79	=	53		
Area =						0.00	x	0	=	0		
1.67					Total	1.67	4	1		151	= CN-	90
Acres	"T/c" =											
	1. Sheet Flow	T.C.=	0.007	x (0.15	x	40)0.80	=	7	Minutes	
			2.64	0.50	0.01	0.40						
	2. Shallow Concentrated											
	Unpaved:	T.C.=	16.135	x	0.0075	0.5 =	1.40	ft/sec				
	est control					=	0	feet	=	0	Minutes	
							1.40	ft/sec	;			
	Paved:	T.C.=	20.328	×	0.005	0.5 =	1.44	ft/sec				
						=	490	feet	=	6	Minutes	
							1.44	ft/sec				
								T/c	Total=	13	Minutes	
1.				Doco	Coil	10		CN		CNIVAG	N (2)	
-	D	her (010)		Desc.	Soil	Ac.		CN	_	CNxAc	».	
- STR. #	Runoff curve num	ber (CN)		Desc. Imp.	Soil (PR.)	Ac.	x	CN 98	=	CNxAc 28	2.	
- STR. # 606	Runoff curve num	ber (CN)		Desc. Imp. Imp.	Soil (PR.) (fut)	Ac. 0.29 0.00	x x	CN 98 98	-	CNxAc 28 0).	
- STR. # 606	Runoff curve num	ber (CN)		Desc. Imp. Imp. Lawn	Soil (PR.) (fut) 'C'	Ac. 0.29 0.00 0.11	x x x	CN 98 98 79	=	CNxAc 28 0 9	2,	
- STR. # 606 Area =	Runoff curve num	ber (CN)		Desc. Imp. Imp. Lawn	Soil (PR.) (fut) 'C'	Ac. 0.29 0.00 0.11 0.00	x x x x	CN 98 98 79 0	= = =	CNxAc 28 0 9 0). = CN	03
- STR. # 606 Area = 0.40	Runoff curve num	ber (CN)		Desc. Imp. Imp. Lawn	Soil (PR.) (fut) 'C' Total	Ac. 0.29 0.00 0.11 0.00 0.40	x x x x	CN 98 98 79 0	= = =	CNxAc 28 0 9 0 37). = CN-	93
	Runoff curve num "T/c" =	ber (CN)	0.007	Desc. Imp. Imp. Lawn	Soil (PR.) (fut) 'C' Total	Ac. 0.29 0.00 0.11 0.00 0.40	x x x x	CN 98 98 79 0 /	-	CNxAc 28 0 9 <u>0</u> 37). = CN-	93
STR. # 606 Area = 0.40 Acres	Runoff curve num "T/c" = 1. Sheet Flow	ber (CN) T.C.=	0.007	Desc. Imp. Imp. Lawn x (Soil (PR.) (fut) 'C' Total 0.15	Ac. 0.29 0.00 0.11 0.00 0.40	x x x x 30	CN 98 98 79 0 /	-	CNxAc 28 0 9 <u>0</u> 37 4). = CN- Minutes	93
- STR. # 606 Area = 0.40 Acres	Runoff curve num "T/c" = 1. Sheet Flow	ber (CN) T.C.=	0.007 2.64	Desc. Imp. Imp. Lawn x (Soil (PR.) (fut) 'C' Total 0.15 0.02	Ac. 0.29 0.00 0.11 0.00 0.40 x	x x x x 30	CN 98 79 0 /	-	CNxAc 28 0 9 <u>0</u> 37 4). = CN- Minutes	93
- STR. # 606 Area = 0.40 Acres	Runoff curve num "T/c" = 1. Sheet Flow 2. Shallow Concentrated	ber (CN) T.C.=	0.007 2.64	Desc. Imp. Imp. Lawn x (Soil (PR.) (fut) 'C' Total 0.15 0.02	Ac. 0.29 0.00 0.11 0.00 0.40 x 0.40	x x x x 30	CN 98 98 79 0 /	-	CNxAc 28 0 9 <u>0</u> 37 4). = CN- Minutes	93
- STR. # 606 Area = 0.40 Acres	Runoff curve num "T/c" = 1. Sheet Flow 2. Shallow Concentrated Unpaved:	ber (CN) T.C.= T.C.=	0.007 2.64 16.135	Desc. Imp. Lawn x (Soil (PR.) (fut) 'C' Total 0.15 0.02 0.015	Ac. 0.29 0.00 0.11 0.00 0.40 x 0.40	x x x x 30	CN 98 98 79 0 / /	-	CNxAc 28 0 9 <u>0</u> 37 4	= CN- Minutes	93
- 506 Area = 0.40 Acres	Runoff curve num "T/c" = 1. Sheet Flow 2. Shallow Concentrated Unpaved:	ber (CN) T.C.= T.C.=	0.007 2.64 16.135	Desc. Imp. Imp. Lawn x (0.50	Soil (PR.) (fut) 'C' Total 0.15 0.02 0.015	Ac. 0.29 0.00 0.11 0.00 0.40 x 0.40 x 0.40	x x x 30 1.98 45	CN 98 98 79 0 / /) ^{0.80} ft/sec	-	CNxAc 28 0 9 0 37 4	= CN- Minutes Minutes	93
- 506 Area = 0.40 Acres	Runoff curve num "T/c" = 1. Sheet Flow 2. Shallow Concentrated Unpaved:	ber (CN) T.C.= T.C.=	0.007 2.64 16.135	Desc. Imp. Imp. Lawn x (0.50 x	Soil (PR.) (fut) 'C' Total 0.15 0.02 0.015	Ac. 0.29 0.00 0.11 0.00 0.40 x 0.40 x 0.5 = =	x x x 30 1.98 45 1.98 2.03	CN 98 98 79 0 /) ^{0.80} ft/sec feet ft/sec	-	CNxAc 28 0 9 0 37 4	= CN- Minutes Minutes	93
- STR. # 606 Area = 0.40 Acres	Runoff curve num "T/c" = 1. Sheet Flow 2. Shallow Concentrated Unpaved: Paved:	ber (CN) T.C.= T.C.= T.C.=	0.007 2.64 16.135 20.328	Desc. Imp. Imp. Lawn x (0.50 x	Soil (PR.) (fut) 'C' Total 0.15 0.02 0.015	Ac. 0.29 0.00 0.11 0.00 0.40 x 0.40 x 0.40 x 0.5 = =	x x x 30 1.98 45 1.98 2.03 56	CN 98 98 79 0 /) ^{0.80} ft/sec feet ft/sec		CNxAc 28 0 9 <u>0</u> 37 4	= CN- Minutes Minutes Minutes	93
- STR. # 606 Area = 0.40 Acres	Runoff curve num "T/c" = 1. Sheet Flow 2. Shallow Concentrated Unpaved: Paved:	ber (CN) T.C.= T.C.= T.C.=	0.007 2.64 16.135 20.328	Desc. Imp. Imp. Lawn x (0.50 x	Soil (PR.) (fut) 'C' Total 0.02 0.015	Ac. 0.29 0.00 0.11 0.00 0.40 x 0.40 x 0.5 = = = 0.5 = =	x x x 30 1.98 45 1.98 2.03 56 2.03	CN 98 98 79 0 /) ^{0.80} ft/sec ft/sec ft/sec ft/sec		CNxAc 28 0 9 <u>0</u> 37 4 0	= CN- Minutes Minutes Minutes	93

Commer	ce Business	s Park	- Bui	Iding	#2			Stor	m S	ewe	r Calcu	lation	IS
					Desc.	Soil	Ac.		CN		CNxAc.		
STR. #	Runoff	curve num	ber (CN)		Imp.	(PR.)	0.47	x	98	=	46		
610					Imp.	(fut)	0.00	X	98	=	0		
					Lawn	'C'	0.08	x	79	=	6		
Area =							0.00	x	0	=	<u>0</u>		
0.55						Total	0.55		1		52	= CN-	95
Acres		"T/c" =											
	1. She	eet Flow	T.C.=	0.007	x (0.15	x	123)0.80	=	2 M	linutes	
				292	0.50	0.01	0.40						
	2. Shallow Conc	entrated											
	U	Inpaved:	T.C.=	16.135	×	0.0075	0.5 =	1.40	ft/sec	;			
							-	0	feet	-	ON	linutes	
								1.40	ft/sec	;			
		Paved:	T.C.=	20.328	×	0.015	0.5 =	2.49	ft/sec	;			
							=	48	feet	-	ON	linutes	
								2.49	ft/sec	:			
									T/c	Total=	2 1	linutes	
74											5 N	linutes	Minumum

Hydrograph Summary Report

1 SCS Fundt 4.42 1 23 4.751 St. 604-0.5 hr. 3 SCS Rundt 4.35 1 34 6.988 St. 604-0.5 hr. 3 SCS Rundt 3.45 1 58 9.481 St. 604-2 hr. 3 SCS Rundt 3.45 1 58 9.481 St. 604-2 hr. 3 SCS Rundt 3.45 1 58 9.481 St. 604-2 hr. 4 J J J J J J J J J J J 3 SCS Rundt J	Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Maximum storage (cuft)	Hydrograph description
2 SGS Runoff 4.36 1 34 5,958 Sit. 604 - 1 hr. 3 SGS Runoff 3.45 1 58 9,481 Sit. 604 - 2 hr. 4 J J 58 9,481 Sit. 604 - 2 hr. 5 SGS Runoff J J 58 9,481 Sit. 604 - 2 hr. 4 J J Sit. Sit. Sit. 604 - 2 hr. Sit. 604 - 2 hr. 4 J J J Sit. Sit. Sit. 604 - 2 hr. 5 Sit. Sit. Sit. Sit. Sit. Sit. 5 Sit. Sit. Sit. Sit. Sit. Sit. Sit. <t< td=""><td>1</td><td>SCS Runoff</td><td>4.42</td><td>1</td><td>23</td><td>4,751</td><td></td><td></td><td></td><td>Str. 604 - 0.5 hr.</td></t<>	1	SCS Runoff	4.42	1	23	4,751				Str. 604 - 0.5 hr.
3 SCS Runoff 3.45 1 58 9.451 Sif: 004 - 2 hr. 3 SCS Runoff 3.45 1 58 9.451 Sif: 004 - 2 hr.	2	SCS Runoff	4.36	1	34	6,968				Str. 604 - 1 hr.
	3	SCS Runoff	3.45	1	58	9,481				Str. 604 - 2 hr.
	3	SCS Runoff	3.45	1	58	9,481				Str. 604 - 2 hr.
S EVENDS-DUA (D)W KERTITERUU. TU TEAL TUESUAV, JUEZD 2010, TUZT AW	STM	1-603-604				Return	Period: 1	0 Year	Tuesdav.	Jul 23 2013, 10:27 AM

Hydraflow Hydrographs by Intelisolve

Hyd. No. 1

Str. 604 - 0.5 hr.

Hydrograph type= SCS RunoffStorm frequency= 10 yrsDrainage area= 1.84 acBasin Slope= 0.0 %Tc method= USERTotal precip.= 1.55 inStorm duration= 1 hrs	Peak discharge= 4.42 cfsTime interval= 1 minCurve number= 90Hydraulic length= 0 ftTime of conc. (Tc)= 13.0 minDistribution= Huff-2ndShape factor= 484
--	---

Hydrograph Volume = 4,751 cuft (Printed values >= 50% of Qp.)

Tuesday, Jul 23 2013, 10:28 AM

Hydrograph Discharge Table

Time - (hrs	- Outflow cfs)
0.27	2.34
0.28	2.86
0.30	3.35
0.32	3.77
0.33	4.09
0.35	4.30
0.37	4.41
0.38	4.42 <<
0.40	4.37
0.42	4.26
0.43	4.08
0.45	3.86
0.47	3.60
0.48	3.32
0.50	3.03
0.52	2.72
0.53	2.42

...End

Hydrograph Summary Report

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Maximum storage (cuft)	Hydrograph description		
1	SCS Runoff	1.67	1	17	1,362		49		Str. 606 - 0.5 hr.		
2	SCS Runoff	1.37	1	29	1,913				Str. 606 - 1 hr.		
3	SCS Runoff	0.95	1	52	2,524				Str. 606 - 2 hr.		
								-			
									- · · ·		
								-			
					:						
				4 H							
STM-605-606.gpw					Return	Period: 1	0 Year	Tuesday, Jul 23 2013, 10:28 AM			

Tuesday, Jul 23 2013, 10:28 AM Hydraflow Hydrographs by Intelisoive Hyd. No. 1 Str. 606 - 0.5 hr. = 1.67 cfs Peak discharge Hydrograph type = SCS Runoff Time interval $= 1 \min$ = 10 yrs Storm frequency = 93 = 0.40 ac Curve number Drainage area = 0 ftHydraulic length = 0.0 %Basin Slope Time of conc. (Tc) = 5.0 minTc method = USER Distribution = Huff-2nd = 1.55 in Total precip. Shape factor = 484 Storm duration = 1 hrs

> Hydrograph Volume = 1,362 cuft (Printed values >= 50% of Qp.)

Hydrograph Discharge Table

Time -- Outflow (hrs cfs)

0.22	1.04
0.23	1.30
0.25	1.52
0.27	1.64
0.28	1.67 <<
0.30	1.63
0.32	1.53
0.33	1.39
0.35	1.23
0.37	1.08
0.38	0.94

...End

Hydrograph Summary Report

Hyd. No <i>.</i>	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Maximum storage (cuft)	Hydrograph description		
1	SCS Runoff	2.64	1	17	2,179				Str. 610 - 0.5 hr.		
2	SCS Runoff	2.11	1	28	2,974				Str. 610 - 1 hr.		
3	SCS Runoff	1.42	1	51	3,843				Str. 610 - 2 hr.		
STM	-609-610.g	gpw			Return I	Period: 1	0 Year	Thursday, Feb 8 2018, 8:24 AM			

Hydraflow Hydrographs by Intelisolve

Hyd. No. 1

Str. 610 - 0.5 hr.

Hydrograph type	= SCS Runoff	Peak discharge = 2.64 cfs
Storm frequency	= 10 yrs	Time interval = 1 min
Drainage area	= 0.55 ac	Curve number = 95
Basin Slope	= 0.0 %	Hydraulic length = 0 ft
Tc method	= USER	Time of conc. (Tc) $= 5.0$ min
Total precip.	= 1.55 in	Distribution = Huff-2nd
Storm duration	= 1 hrs	Shape factor = 484

Hydrograph Volume = 2,179 cuft (Printed values >= 50% of Qp.)

Thursday, Feb 8 2018, 8:24 AM

Hydrograph Discharge Table

Time Outflow										
(hrs	cfs)									
0.20	1.41									
0.22	1.83									
0.23	2.20									
0.25	2.49									
0.27	2.64									
0.28	2.64 <<									
0.30	2.54									
0.32	2.35									
0.33	2.11									
0.35	1.86									
0.37	1.61									
0.38	1.40									

...End

Hydraflow Summary Report

Line No.	Line ID	Flow rate (cfs)	Line size (in)	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line slope (%)	HGL down (ft)	HGL up (ft)	Minor loss (ft)	Dns line No.
1	603	4.36	18 c	45.0	736.05	736.20	0.333	736.85	737.16	0.00	End
1											
							ver ver ver verbetet men verbetet				
							i de la companya de l		ı.		
							And a start of the				
							non no				
Proj	ect File: 603-604.stm	<u> </u>	IDF File	: Marion1.	IDF	Total No). Lines: [·]	900	Run Date:	07-23-2	2013
NOT	ES: c = circular; e = c	elliptical; k	o = box; Re	turn period	= 10 Yrs.;	* Indicates	surcharge	condition.	· · · · · · · · · · · · · · · · · · ·		

Page 1

Line D			603						2013
im Elev	5	(¥)	0.00						te: 07-23-
Grnd / R	dŊ	(#)	740.35				•		Run Da
Elev	Dn	(¥)	736.85						
HGL	dŋ	(tt)	737.16						nes: 1
: Elev	ŋ	(4)	736.05						umber of li
Invert	đ	(tt)	736.20						Total ni
ed	Slope	(%)	0.33						
Pi	Size	(in)	8						
Vel		(ft/s)	4.10						
Cap		(cfs)	6.06	 	1				
Total		(cfs)	4.36	 			·		
Rain	3	(in/hr)	0.0	 					n1.IDF
	Syst	(min)	0.0						e: Maric
4	İnlet	(min)	0.0					,	IDF FI
C X	Total		0.00						
Area	Incr		00.0						
Rnoff coeff		ΰ	0.00						
Area	Total	(ac)	00.0	 		• .			
Drng	Incr	(ac)	0.00	 	-				604.stm
Len		(¥)	45.0						e: 603-1
ıtion	To Líne		ц Ш	 					oject Fil
Sta	Line		~`						<u> </u>

â

Hydraflow Storm Sewer Tabulation

Hydraflow Summary Report

Line No.	Line ID	Flow rate (cfs)	Line size (in)	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line slope (%)	HGL down (ft)	HGL up (ft)	Minor Ioss (ft)	Dns line No.
1	606	3.35	15 c	84.0	736.15	736.40	0.295	736.88	737.43	0.00	End
										and the second	
											- Autor
	1			,							
							Ĩ	44 		4 4 ar	
								1			
				94444 - 444				-			
										444 - 4	
	and the second se			4						*******	
4 					1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 19	1997			******	Ĩ	
				*****		1					0
									4444		
- fundation		f									3-73-84 8-
						8					
						3					
Projec	ct File: 605-606.stm		IDF File:	Marion1.IE	DF	Total No.	Lines: 1		Run Date:	07-23-20	013
NOTE	OTES: c = circular; e = elliptical; b = box; Return period = 10 Yrs.: * Indicates surcharge condition.										

Page 1

Line ID	1		909 09	
im Elev	ũ	(ŧŧ)	0 0 0	
Grnd / R	dŋ	(tj)	738.75	
Elev	Du	(tt)	736.88	
HGL	۹Ŋ	(tt)	737.43	
Elev	5	(tt)	736.15	
invert	đ	(ft)	736.40	
e	Slope	(%)	C C C	
1	Size	(ij)	τ ύ ,	
		(ft/s)	3.79	
		(cfs)	Э. 5 <u>7</u>	
fiow		(cfs)	SC. SC.	
Ξ	2	(in/hr)	0.0	
	Syst	(min)	O. O	
	Inlet	(min)	0 0	
ļ	Total		0.00 0.00	
	lncr		0.00	 \$
coeff		<u>ତ</u>	00 00	
	Total	(ac)	0000 · · · · · · · · · · · · · · · · ·	
,	Incr	(ac)	0.00	
1		(¥	8 0 0	
	To Line			
	Line		←	

Page 1

Hydraflow Storm Sewer Tabulation

Hydraflow Summary Report

Line No.	Line ID	Flow rate (cfs)	Line size (in)	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line slope (%)	HGL down (ft)	HGL up (ft)	Minor loss (ft)	Dns line No.
1	606	2.64	15 c	82.0	736.45	736.70	0.305	737.10	737.57	0.00	End
:											
											44.4.4.4
, where the second s											
			444 Annu 6-								
			4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4								
			, ,								
Proje	ct File: 609-610.stm		IDF File:	Marion1.I	DF	Total No.	Lines: 1		Run Date:	02-08-2	018
NOT	ES: c = circular; e = e	lliptical; b	= box; Ret	urn period	= 10 Yrs.;	* Indicates s	urcharge c	condition.			

Page 1

Line ID 606 Run Date: 02-08-2018 Grnd / Rim Elev ď £ 0.00 740.75 £ đ 737.10 (¥) Du HGL Elev 737.57 dN Ð Total number of lines: 1 736.45 ñ £ Invert Elev 736.70 ЧD ŧ Size Slope 0.30 (%) Pipe NOTES: Intensity = 0.00 / (Inlet time + 0.00) ^ 0.00; Return period = 10 Yrs.; Initial tailwater elevation = 737.10 (ft) (ii) ŝ (ft/s) 3.50 Vel (cfs) Cap 3.57 Total flow (min) (in/hr) (cfs) 2.64 Rain (I) IDF File: Marion1.IDF 0.0 Syst 0.0 ц (min) Inlet 0.0 Incr Total 0.00 Area x C 0.00 Rnoff 0.00 0 Total (ac) 0,00 Drng Area Project File: 609-610.stm Incr (ac) 0.00 Len 82.0 ŧ Line To Line End Station ...

Page 1

Hydraflow Storm Sewer Tabulation

COMMERCE BUSINESS PARK - BUILDING #1 INLET DEPTH CALCULATION

INLET # 606	Neenah 3405	Casting (50% Clogged)
Discharge Rate (Qi) = 1	.67 c.f.s.	
Perimeter of Grate Opening (P) = 3	.95 ft.	
Area of Grate Opening (Ai) = 0	.75 sq. ft.	

Grate acting as weir (depths less than 0.3 ft.): Qi = $3.0P[(d)^{1.5}]$ Grate acting as orifice (depths greater than 0.4 ft.): Qi = $4.89(Ai)[(d)^{0.8}]$

Weir flow depth =	0.27	ft.
Orifice flow depth =	0.21	ft.

Allowable Depth = 0.50 ft.

COMMERCE BUSINESS PARK - BUILDING #2 INLET DEPTH CALCULATION

INLET # 610	Neenah 3405	Casting (50% Clogged)
Discharge Rate (Qi) =	1.98 c.f.s.	
Perimeter of Grate Opening (P) =	3.95 ft.	
Area of Grate Opening (Ai) =	0.75 sq. ft.	

Grate acting as weir (depths less than 0.3 ft.): $Qi = 3.0P[(d)^{1.5}]$ Grate acting as orifice (depths greater than 0.4 ft.): $Qi = 4.89(Ai)[(d)^{0.8}]$

Weir flow depth =	0.30 ft.
Orifice flow depth =	0.29 ft.
Allowable Depth =	0.50 ft.

Watershed Basin Maps

